889 research outputs found

    Workload Equity in Vehicle Routing Problems: A Survey and Analysis

    Full text link
    Over the past two decades, equity aspects have been considered in a growing number of models and methods for vehicle routing problems (VRPs). Equity concerns most often relate to fairly allocating workloads and to balancing the utilization of resources, and many practical applications have been reported in the literature. However, there has been only limited discussion about how workload equity should be modeled in VRPs, and various measures for optimizing such objectives have been proposed and implemented without a critical evaluation of their respective merits and consequences. This article addresses this gap with an analysis of classical and alternative equity functions for biobjective VRP models. In our survey, we review and categorize the existing literature on equitable VRPs. In the analysis, we identify a set of axiomatic properties that an ideal equity measure should satisfy, collect six common measures, and point out important connections between their properties and those of the resulting Pareto-optimal solutions. To gauge the extent of these implications, we also conduct a numerical study on small biobjective VRP instances solvable to optimality. Our study reveals two undesirable consequences when optimizing equity with nonmonotonic functions: Pareto-optimal solutions can consist of non-TSP-optimal tours, and even if all tours are TSP optimal, Pareto-optimal solutions can be workload inconsistent, i.e. composed of tours whose workloads are all equal to or longer than those of other Pareto-optimal solutions. We show that the extent of these phenomena should not be underestimated. The results of our biobjective analysis are valid also for weighted sum, constraint-based, or single-objective models. Based on this analysis, we conclude that monotonic equity functions are more appropriate for certain types of VRP models, and suggest promising avenues for further research.Comment: Accepted Manuscrip

    The Vehicle Routing Problem with Service Level Constraints

    Full text link
    We consider a vehicle routing problem which seeks to minimize cost subject to service level constraints on several groups of deliveries. This problem captures some essential challenges faced by a logistics provider which operates transportation services for a limited number of partners and should respect contractual obligations on service levels. The problem also generalizes several important classes of vehicle routing problems with profits. To solve it, we propose a compact mathematical formulation, a branch-and-price algorithm, and a hybrid genetic algorithm with population management, which relies on problem-tailored solution representation, crossover and local search operators, as well as an adaptive penalization mechanism establishing a good balance between service levels and costs. Our computational experiments show that the proposed heuristic returns very high-quality solutions for this difficult problem, matches all optimal solutions found for small and medium-scale benchmark instances, and improves upon existing algorithms for two important special cases: the vehicle routing problem with private fleet and common carrier, and the capacitated profitable tour problem. The branch-and-price algorithm also produces new optimal solutions for all three problems

    Survey on Ten Years of Multi-Depot Vehicle Routing Problems: Mathematical Models, Solution Methods and Real-Life Applications

    Get PDF
    A crucial practical issue encountered in logistics management is the circulation of final products from depots to end-user customers. When routing and scheduling systems are improved, they will not only improve customer satisfaction but also increase the capacity to serve a large number of customers minimizing time. On the assumption that there is only one depot, the key issue of distribution is generally identified and formulated as VRP standing for Vehicle Routing Problem. In case, a company having more than one depot, the suggested VRP is most unlikely to work out. In view of resolving this limitation and proposing alternatives, VRP with multiple depots and multi-depot MDVRP have been a focus of this paper. Carrying out a comprehensive analytical literature survey of past ten years on cost-effective Multi-Depot Vehicle Routing is the main aim of this research. Therefore, the current status of the MDVRP along with its future developments is reviewed at length in the paper

    Optimization of vehicle routing and scheduling with travel time variability - application in winter road maintenance

    Get PDF
    This study developed a mathematical model for optimizing vehicle routing and scheduling, which can be used to collect travel time information, and also to perform winter road maintenance operations (e.g., salting, plowing). The objective of this research was to minimize the total vehicle travel time to complete a given set of service tasks, subject to resource constraints (e.g., truck capacity, fleet size) and operational constraints (e.g., service time windows, service time limit). The nature of the problem is to design vehicle routes and schedules to perform the required service on predetermined road segments, which can be interpreted as an arc routing problem (ARP). By using a network transformation technique, an ARP can be transformed into a well-studied node routing problem (NRP). A set-partitioning (SP) approach was introduced to formulate the problem into an integer programming problem (I PP). To solve this problem, firstly, a number of feasible routes were generated, subject to resources and operational constraints. A genetic algorithm based heuristic was developed to improve the efficiency of generating feasible routes. Secondly, the corresponding travel time of each route was computed. Finally, the feasible routes were entered into the linear programming solver (CPL EX) to obtain final optimized results. The impact of travel time variability on vehicle routing and scheduling for transportation planning was also considered in this study. Usually in the concern of vehicle and pedestrian\u27s safety, federal, state governments and local agencies are more leaning towards using a conservative approach with constant travel time for the planning of winter roadway maintenance than an aggressive approach, which means that they would rather have a redundancy of plow trucks than a shortage. The proposed model and solution algorithm were validated with an empirical case study of 41 snow sections in the northwest area of New Jersey. Comprehensive analysis based on a deterministic travel time setting and a time-dependent travel time setting were both performed. The results show that a model that includes time dependent travel time produces better results than travel time being underestimated and being overestimated in transportation planning. In addition, a scenario-based analysis suggests that the current NJDOT operation based on given snow sector design, service routes and fleet size can be improved by the proposed model that considers time dependent travel time and the geometry of the road network to optimize vehicle routing and scheduling. In general, the benefit of better routing and scheduling design for snow plowing could be reflected in smaller minimum required fleet size and shorter total vehicle travel time. The depot location and number of service routes also have an impact on the final optimized results. This suggests that managers should consider the depot location, vehicle fleet sizing and the routing design problem simultaneously at the planning stage to minimize the total cost for snow plowing operations

    Economic and environmental concerns in planning recyclable waste collection systems

    Get PDF
    This paper addresses the planning of recyclable waste collection systems while accounting for economic and environmental concerns. Service areas and vehicle routes are defined for multiple-depot logistics networks where different products have to be collected. The problem is modeled as a multi-product, multi-depot vehicle routing problem with two objective functions: distance and CO2 emissions minimization. A decomposition solution method is developed and applied to a real case-study. Six scenarios are studied regarding different service areas configuration and different objective functions. Savings up to 22% in distance and 27% in CO2 emissions are achieved, excelling economical and environmental goals.info:eu-repo/semantics/publishedVersio

    Modeling Correlation in Vehicle Routing Problems with Makespan Objectives and Stochastic Travel Times

    Get PDF
    The majority of stochastic vehicle routing models consider travel times to be independent. However, in reality, travel times are often stochastic and correlated, such as in urban areas. We examine a vehicle routing problem with a makespan objective incorporating both stochastic and correlated travel times. We develop an approach based on extreme-value theory to estimate the expected makespan (and standard deviation) and embed this within a routing heuristic. We present results that demonstrate the impact of different correlation patterns and levels of correlation on route planning

    Inventory routing for dynamic waste collection

    Get PDF
    We consider the problem of collecting waste from sensor equipped underground containers. These sensors enable the use of a dynamic collection policy. The problem, which is known as a reverse inventory routing problem, involves decisions regarding routing and container selection. In more dense networks, the latter becomes more important. To cope with uncertainty in deposit volumes and with fluctuations due to daily and seasonal e ects, we need an anticipatory policy that balances the workload over time. We propose a relatively simple heuristic consisting of several tunable parameters depending on the day of the week. We tune the parameters of this policy using optimal learning techniques combined with simulation. We illustrate our approach using a real life problem instance of a waste collection company, located in The Netherlands, and perform experiments on several other instances. For our case study, we show that costs savings up to 40% are possible by optimizing the parameters

    The Multi-Depot Minimum Latency Problem with Inter-Depot Routes

    Get PDF
    The Minimum Latency Problem (MLP) is a class of routing problems that seeks to minimize the wait times (latencies) of a set of customers in a system. Similar to its counterparts in the Traveling Salesman Problem (TSP) and Vehicle Routing Problem (VRP), the MLP is NP-hard. Unlike these other problem classes, however, the MLP is customer-oriented and thus has impactful potential for better serving customers in settings where they are the highest priority. While the VRP is very widely researched and applied to many industry settings to reduce travel times and costs for service-providers, the MLP is a more recent problem and does not have nearly the body of literature supporting it as found in the VRP. However, it is gaining significant attention recently because of its application to such areas as disaster relief logistics, which are a growing problem area in a global context and have potential for meaningful improvements that translate into reduced suffering and saved lives. An effective combination of MLP\u27s and route minimizing objectives can help relief agencies provide aid efficiently and within a manageable cost. To further the body of literature on the MLP and its applications to such settings, a new variant is introduced here called the Multi-Depot Minimum Latency Problem with Inter-Depot Routes (MDMLPI). This problem seeks to minimize the cumulative arrival times at all customers in a system being serviced by multiple vehicles and depots. Vehicles depart from one central depot and have the option of refilling their supply at a number of intermediate depots. While the equivalent problem has been studied using a VRP objective function, this is a new variant of the MLP. As such, a mathematical model is introduced along with several heuristics to provide the first solution approaches to solving it. Two objectives are considered in this work: minimizing latency, or arrival times at each customer, and minimizing weighted latency, which is the product of customer need and arrival time at that customer. The case of weighted latency carries additional significance as it may correspond to a larger number of customers at one location, thus adding emphasis to the speed with which they are serviced. Additionally, a discussion on fairness and application to disaster relief settings is maintained throughout. To reflect this, standard deviation among latencies is also evaluated as a measure of fairness in each of the solution approaches. Two heuristic approaches, as well as a second-phase adjustment to be applied to each, are introduced. The first is based on an auction policy in which customers bid to be the next stop on a vehicle\u27s tour. The second uses a procedure, referred to as an insertion technique, in which customers are inserted one-by-one into a partial routing solution such that each addition minimizes the (weighted) latency impact of that single customer. The second-phase modification takes the initial solutions achieved in the first two heuristics and considers the (weighted) latency impact of repositioning nodes one at a time. This is implemented to remove potential inefficient routing placements from the original solutions that can have compounding effects for all ensuing stops on the tour. Each of these is implemented on ten test instances. A nearest neighbor (greedy) policy and previous solutions to these instances with a VRP objective function are used as benchmarks. Both heuristics perform well in comparison to these benchmarks. Neither heuristic appears to perform clearly better than the other, although the auction policy achieves slightly better averages for the performance measures. When applying the second-phase adjustment, improvements are achieved and lead to even greater reductions in latency and standard deviation for both objectives. The value of these latency reductions is thoroughly demonstrated and a call for further research regarding customer-oriented objectives and evaluation of fairness in routing solutions is discussed. Finally, upon conclusion of the results presented in this work, several promising areas for future work and existing gaps in the literature are highlighted. As the body of literature surrounding the MLP is small yet growing, these areas constitute strong directions with important relevance to Operations Research, Humanitarian Logistics, Production Systems, and more
    • …
    corecore