10,205 research outputs found

    Performance of distributed mechanisms for flow admission in wireless adhoc networks

    Full text link
    Given a wireless network where some pairs of communication links interfere with each other, we study sufficient conditions for determining whether a given set of minimum bandwidth quality-of-service (QoS) requirements can be satisfied. We are especially interested in algorithms which have low communication overhead and low processing complexity. The interference in the network is modeled using a conflict graph whose vertices correspond to the communication links in the network. Two links are adjacent in this graph if and only if they interfere with each other due to being in the same vicinity and hence cannot be simultaneously active. The problem of scheduling the transmission of the various links is then essentially a fractional, weighted vertex coloring problem, for which upper bounds on the fractional chromatic number are sought using only localized information. We recall some distributed algorithms for this problem, and then assess their worst-case performance. Our results on this fundamental problem imply that for some well known classes of networks and interference models, the performance of these distributed algorithms is within a bounded factor away from that of an optimal, centralized algorithm. The performance bounds are simple expressions in terms of graph invariants. It is seen that the induced star number of a network plays an important role in the design and performance of such networks.Comment: 21 pages, submitted. Journal version of arXiv:0906.378

    Robust Adaptive Congestion Control for Next Generation Networks

    Get PDF
    This paper deals with the problem of congestion control in a next-generation heterogeneous network scenario. The algorithm runs in the 'edge' routers (the routers collecting the traffic between two different networks) with the aim of avoiding congestion in both the network and the edge routers. The proposed algorithm extends congestion control algorithms based on the Smith's principle: i) the controller, by exploiting on-line estimates via probe packets, adapts to the delay and rate variations; ii) the controller assures robust stability in the presence of time-varying delays

    Stuck in Traffic (SiT) Attacks: A Framework for Identifying Stealthy Attacks that Cause Traffic Congestion

    Full text link
    Recent advances in wireless technologies have enabled many new applications in Intelligent Transportation Systems (ITS) such as collision avoidance, cooperative driving, congestion avoidance, and traffic optimization. Due to the vulnerable nature of wireless communication against interference and intentional jamming, ITS face new challenges to ensure the reliability and the safety of the overall system. In this paper, we expose a class of stealthy attacks -- Stuck in Traffic (SiT) attacks -- that aim to cause congestion by exploiting how drivers make decisions based on smart traffic signs. An attacker mounting a SiT attack solves a Markov Decision Process problem to find optimal/suboptimal attack policies in which he/she interferes with a well-chosen subset of signals that are based on the state of the system. We apply Approximate Policy Iteration (API) algorithms to derive potent attack policies. We evaluate their performance on a number of systems and compare them to other attack policies including random, myopic and DoS attack policies. The generated policies, albeit suboptimal, are shown to significantly outperform other attack policies as they maximize the expected cumulative reward from the standpoint of the attacker

    A Dynamic Multimedia User-Weight Classification Scheme for IEEE_802.11 WLANs

    Full text link
    In this paper we expose a dynamic traffic-classification scheme to support multimedia applications such as voice and broadband video transmissions over IEEE 802.11 Wireless Local Area Networks (WLANs). Obviously, over a Wi-Fi link and to better serve these applications - which normally have strict bounded transmission delay or minimum link rate requirement - a service differentiation technique can be applied to the media traffic transmitted by the same mobile node using the well-known 802.11e Enhanced Distributed Channel Access (EDCA) protocol. However, the given EDCA mode does not offer user differentiation, which can be viewed as a deficiency in multi-access wireless networks. Accordingly, we propose a new inter-node priority access scheme for IEEE 802.11e networks which is compatible with the EDCA scheme. The proposed scheme joins a dynamic user-weight to each mobile station depending on its outgoing data, and therefore deploys inter-node priority for the channel access to complement the existing EDCA inter-frame priority. This provides efficient quality of service control across multiple users within the same coverage area of an access point. We provide performance evaluations to compare the proposed access model with the basic EDCA 802.11 MAC protocol mode to elucidate the quality improvement achieved for multimedia communication over 802.11 WLANs.Comment: 15 pages, 8 figures, 3 tables, International Journal of Computer Networks & Communications (IJCNC

    Low Power Dynamic Scheduling for Computing Systems

    Full text link
    This paper considers energy-aware control for a computing system with two states: "active" and "idle." In the active state, the controller chooses to perform a single task using one of multiple task processing modes. The controller then saves energy by choosing an amount of time for the system to be idle. These decisions affect processing time, energy expenditure, and an abstract attribute vector that can be used to model other criteria of interest (such as processing quality or distortion). The goal is to optimize time average system performance. Applications of this model include a smart phone that makes energy-efficient computation and transmission decisions, a computer that processes tasks subject to rate, quality, and power constraints, and a smart grid energy manager that allocates resources in reaction to a time varying energy price. The solution methodology of this paper uses the theory of optimization for renewal systems developed in our previous work. This paper is written in tutorial form and develops the main concepts of the theory using several detailed examples. It also highlights the relationship between online dynamic optimization and linear fractional programming. Finally, it provides exercises to help the reader learn the main concepts and apply them to their own optimizations. This paper is an arxiv technical report, and is a preliminary version of material that will appear as a book chapter in an upcoming book on green communications and networking.Comment: 26 pages, 10 figures, single spac
    • …
    corecore