67 research outputs found

    A Synthesis Method for Quaternary Quantum Logic Circuits

    Full text link
    Synthesis of quaternary quantum circuits involves basic quaternary gates and logic operations in the quaternary quantum domain. In this paper, we propose new projection operations and quaternary logic gates for synthesizing quaternary logic functions. We also demonstrate the realization of the proposed gates using basic quantum quaternary operations. We then employ our synthesis method to design of quaternary adder and some benchmark circuits. Our results in terms of circuit cost, are better than the existing works.Comment: 10 page

    Interpolation Methods for Binary and Multivalued Logical Quantum Gate Synthesis

    Full text link
    A method for synthesizing quantum gates is presented based on interpolation methods applied to operators in Hilbert space. Starting from the diagonal forms of specific generating seed operators with non-degenerate eigenvalue spectrum one obtains for arity-one a complete family of logical operators corresponding to all the one-argument logical connectives. Scaling-up to n-arity gates is obtained by using the Kronecker product and unitary transformations. The quantum version of the Fourier transform of Boolean functions is presented and a Reed-Muller decomposition for quantum logical gates is derived. The common control gates can be easily obtained by considering the logical correspondence between the control logic operator and the binary propositional logic operator. A new polynomial and exponential formulation of the Toffoli gate is presented. The method has parallels to quantum gate-T optimization methods using powers of multilinear operator polynomials. The method is then applied naturally to alphabets greater than two for multi-valued logical gates used for quantum Fourier transform, min-max decision circuits and multivalued adders

    Constructing all qutrit controlled Clifford+T gates in Clifford+T

    Full text link
    For a number of useful quantum circuits, qudit constructions have been found which reduce resource requirements compared to the best known or best possible qubit construction. However, many of the necessary qutrit gates in these constructions have never been explicitly and efficiently constructed in a fault-tolerant manner. We show how to exactly and unitarily construct any qutrit multiple-controlled Clifford+T unitary using just Clifford+T gates and without using ancillae. The T-count to do so is polynomial in the number of controls kk, scaling as O(k3.585)O(k^{3.585}). With our results we can construct ancilla-free Clifford+T implementations of multiple-controlled T gates as well as all versions of the qutrit multiple-controlled Toffoli, while the analogous results for qubits are impossible. As an application of our results, we provide a procedure to implement any ternary classical reversible function on nn trits as an ancilla-free qutrit unitary using O(3nn3.585)O(3^n n^{3.585}) T gates.Comment: 14 page

    Improved reversible and quantum circuits for Karatsuba-based integer multiplication

    Get PDF
    Integer arithmetic is the underpinning of many quantum algorithms, with applications ranging from Shor\u27s algorithm over HHL for matrix inversion to Hamiltonian simulation algorithms. A basic objective is to keep the required resources to implement arithmetic as low as possible. This applies in particular to the number of qubits required in the implementation as for the foreseeable future this number is expected to be small. We present a reversible circuit for integer multiplication that is inspired by Karatsuba\u27s recursive method. The main improvement over circuits that have been previously reported in the literature is an asymptotic reduction of the amount of space required from O(n^1.585) to O(n^1.427). This improvement is obtained in exchange for a small constant increase in the number of operations by a factor less than 2 and a small asymptotic increase in depth for the parallel version. The asymptotic improvement are obtained from analyzing pebble games on complete ternary trees
    • …
    corecore