7,624 research outputs found

    Exact solution and exotic fluid in cosmology

    Full text link
    We investigate cosmological consequences of nonlinear sigma model coupled with a cosmological fluid which satisfies the continuity equation. The target space action is of de Sitter type and is composed of four scalar fields. The potential which is a function of only one of the scalar fields is also introduced. We perform a general analysis of the ensuing cosmological equations and give various critical points and their properties. Then, we show that the model exhibits exact cosmological solution which yields a transition from matter domination into dark energy and compare it with the Λ\LambdaCDM behavior. Especially, we calculate the age of the Universe and show that it is consistent with the observational value if the equation of the state ωf\omega_f for the cosmological fluid is within the range of 0.13<ωf<0.22.0.13 < \omega_f < 0.22. Some implication of this result is also discussed.Comment: 13 pages, 1 table, 1 figure, published versio

    Bouncing cosmological solutions from f(R,T) gravity

    Full text link
    In this work we study classical bouncing solutions in the context of f(R,T)=R+h(T)f({\sf R},{\sf T})={\sf R}+h({\sf T}) gravity in a flat {\sf FLRW} background using a perfect fluid as the only matter content. Our investigation is based on introducing an effective fluid through defining effective energy density and pressure; we call this reformulation as the "effective picture". These definitions have been already introduced to study the energy conditions in f(R,T)f({\sf R},{\sf T}) gravity. We examine various models to which different effective equations of state, corresponding to different h(T)h({\sf T}) functions, can be attributed. It is also discussed that one can link between an assumed f(R,T)f({\sf R},{\sf T}) model in the effective picture and the theories with generalized equation of state ({\sf EoS}). We obtain cosmological scenarios exhibiting a nonsingular bounce before and after which the Universe lives within a de-Sitter phase. We then proceed to find general solutions for matter bounce and investigate their properties. We show that the properties of bouncing solution in the effective picture of f(R,T)f({\sf R},{\sf T}) gravity are as follows: for a specific form of the f(R,T)f({\sf R,T}) function, these solutions are without any future singularities. Moreover, stability analysis of the nonsingular solutions through matter density perturbations revealed that except two of the models, the parameters of scalar-type perturbations for the other ones have a slight transient fluctuation around the bounce point and damp to zero or a finite value at late times. Hence these bouncing solutions are stable against scalar-type perturbations. It is possible that all energy conditions be respected by the real perfect fluid, however, the null and the strong energy conditions can be violated by the effective fluid near the bounce event.Comment: 49 pages, 11 figures, one tabl

    Tunneling in Λ\Lambda Decaying Cosmologies and the Cosmological Constant Problem

    Full text link
    The tunneling rate, with exact prefactor, is calculated to first order in \hbar for an empty closed Friedmann-Robertson-Walker (FRW) universe with decaying cosmological term ΛRm\Lambda \sim R^{-m} (RR is the scale factor and mm is a parameter 0m20\leq m \leq 2). This model is equivalent to a cosmology with the equation of state pχ=(m/31)ρχp_{\chi}=(m/3 -1)\rho_{\chi}. The calculations are performed by applying the dilute-instanton approximation on the corresponding Duru-Kleinert path integral. It is shown that the highest tunneling rate occurs for m=2m=2 corresponding to the cosmic string matter universe. The obtained most probable cosmological term, like one obtained by Strominger, accounts for a possible solution to the cosmological constant problem.Comment: 21 pages, REVTEX, The section 3 is considerably completed including some physical mechanisms supporting the time variation of the cosmological constant, added references for the section 3. Accepted to be published in Phys. Rev.

    A Solution to the Graceful Exit Problem in Pre-Big Bang Cosmology

    Full text link
    We examine the string cosmology equations with a dilaton potential in the context of the Pre-Big Bang Scenario with the desired scale factor duality, and give a generic algorithm for obtaining solutions with appropriate evolutionary properties. This enables us to find pre-big bang type solutions with suitable dilaton behaviour that are regular at t=0t=0, thereby solving the graceful exit problem. However to avoid fine tuning of initial data, an `exotic' equation of state is needed that relates the fluid properties to the dilaton field. We discuss why such an equation of state should be required for reliable dilaton behaviour at late times.Comment: 16 pages LaTeX, 5 figures. To appear in Physical Review

    Cosmological Bianchi Class A models in S\'aez-Ballester theory

    Get PDF
    We use the S\'aez-Ballester (SB) theory on anisotropic Bianchi Class A cosmological model, with barotropic fluid and cosmological constant, using the Hamilton or Hamilton-Jacobi approach. Contrary to claims in the specialized literature, it is shown that the S\'aez-Ballester theory cannot provide a realistic solution to the dark matter problem of Cosmology for the dust epoch, without a fine tunning because the contribution of the scalar field in this theory is equivalent to a stiff fluid (as can be seen from the energy--momentum tensor for the scalar field), that evolves in a different way as the dust component. To have similar contributions of the scalar component and the dust component implies that their past values were fine tunned. So, we reinterpreting this null result as an indication that dark matter plays a central role in the formation of structures and galaxy evolution, having measureable effects in the cosmic microwave bound radiation, and than this formalism yield to this epoch as primigenius results. We do the mention that this formalism was used recently in the so called K-essence theory applied to dark energy problem, in place to the dark matter problem. Also, we include a quantization procedure of the theory which can be simplified by reinterpreting the theory in the Einstein frame, where the scalar field can be interpreted as part of the matter content of the theory, and exact solutions to the Wheeler-DeWitt equation are found, employing the Bianchi Class A cosmological models.Comment: 24 pages; ISBN: 978-953-307-626-3, InTec
    corecore