315 research outputs found

    Dual-Branch MRC Receivers under Spatial Interference Correlation and Nakagami Fading

    Full text link
    Despite being ubiquitous in practice, the performance of maximal-ratio combining (MRC) in the presence of interference is not well understood. Because the interference received at each antenna originates from the same set of interferers, but partially de-correlates over the fading channel, it possesses a complex correlation structure. This work develops a realistic analytic model that accurately accounts for the interference correlation using stochastic geometry. Modeling interference by a Poisson shot noise process with independent Nakagami fading, we derive the link success probability for dual-branch interference-aware MRC. Using this result, we show that the common assumption that all receive antennas experience equal interference power underestimates the true performance, although this gap rapidly decays with increasing the Nakagami parameter mIm_{\text{I}} of the interfering links. In contrast, ignoring interference correlation leads to a highly optimistic performance estimate for MRC, especially for large mIm_{\text{I}}. In the low outage probability regime, our success probability expression can be considerably simplified. Observations following from the analysis include: (i) for small path loss exponents, MRC and minimum mean square error combining exhibit similar performance, and (ii) the gains of MRC over selection combining are smaller in the interference-limited case than in the well-studied noise-limited case.Comment: to appear in IEEE Transactions on Communication

    Modeling Heterogeneous Network Interference Using Poisson Point Processes

    Full text link
    Cellular systems are becoming more heterogeneous with the introduction of low power nodes including femtocells, relays, and distributed antennas. Unfortunately, the resulting interference environment is also becoming more complicated, making evaluation of different communication strategies challenging in both analysis and simulation. Leveraging recent applications of stochastic geometry to analyze cellular systems, this paper proposes to analyze downlink performance in a fixed-size cell, which is inscribed within a weighted Voronoi cell in a Poisson field of interferers. A nearest out-of-cell interferer, out-of-cell interferers outside a guard region, and cross-tier interference are included in the interference calculations. Bounding the interference power as a function of distance from the cell center, the total interference is characterized through its Laplace transform. An equivalent marked process is proposed for the out-of-cell interference under additional assumptions. To facilitate simplified calculations, the interference distribution is approximated using the Gamma distribution with second order moment matching. The Gamma approximation simplifies calculation of the success probability and average rate, incorporates small-scale and large-scale fading, and works with co-tier and cross-tier interference. Simulations show that the proposed model provides a flexible way to characterize outage probability and rate as a function of the distance to the cell edge.Comment: Submitted to the IEEE Transactions on Signal Processing, July 2012, Revised December 201

    Outage Probability of Dual-Hop Selective AF With Randomly Distributed and Fixed Interferers

    Full text link
    The outage probability performance of a dual-hop amplify-and-forward selective relaying system with global relay selection is analyzed for Nakagami-mm fading channels in the presence of multiple interferers at both the relays and the destination. Two different cases are considered. In the first case, the interferers are assumed to have random number and locations. Outage probability using the generalized Gamma approximation (GGA) in the form of one-dimensional integral is derived. In the second case, the interferers are assumed to have fixed number and locations. Exact outage probability in the form of one-dimensional integral is derived. For both cases, closed-form expressions of lower bounds and asymptotic expressions for high signal-to-interference-plus-noise ratio are also provided. Simplified closed-form expressions of outage probability for special cases (e.g., dominant interferences, i.i.d. interferers, Rayleigh distributed signals) are studied. Numerical results are presented to show the accuracy of our analysis by examining the effects of the number and locations of interferers on the outage performances of both AF systems with random and fixed interferers.Comment: 35 pages, 11 figures, accepted with minor revisions for publication as a regular paper in the IEEE Transactions on Vehicular Technology on 21/09/201

    Exploiting Spatial Interference Alignment and Opportunistic Scheduling in the Downlink of Interference Limited Systems

    Full text link
    In this paper we analyze the performance of single stream and multi-stream spatial multiplexing (SM) systems employing opportunistic scheduling in the presence of interference. In the proposed downlink framework, every active user reports the post-processing signal-to-interference-plus-noise-power-ratio (post-SINR) or the receiver specific mutual information (MI) to its own transmitter using a feedback channel. The combination of scheduling and multi-antenna receiver processing leads to substantial interference suppression gain. Specifically, we show that opportunistic scheduling exploits spatial interference alignment (SIA) property inherent to a multi-user system for effective interference mitigation. We obtain bounds for the outage probability and the sum outage capacity for single stream and multi stream SM employing real or complex encoding for a symmetric interference channel model. The techniques considered in this paper are optimal in different operating regimes. We show that the sum outage capacity can be maximized by reducing the SM rate to a value less than the maximum allowed value. The optimum SM rate depends on the number of interferers and the number of available active users. In particular, we show that the generalized multi-user SM (MU SM) method employing real-valued encoding provides a performance that is either comparable, or significantly higher than that of MU SM employing complex encoding. A combination of analysis and simulation is used to describe the trade-off between the multiplexing rate and sum outage capacity for different antenna configurations

    Downlink SDMA with Limited Feedback in Interference-Limited Wireless Networks

    Full text link
    The tremendous capacity gains promised by space division multiple access (SDMA) depend critically on the accuracy of the transmit channel state information. In the broadcast channel, even without any network interference, it is known that such gains collapse due to interstream interference if the feedback is delayed or low rate. In this paper, we investigate SDMA in the presence of interference from many other simultaneously active transmitters distributed randomly over the network. In particular we consider zero-forcing beamforming in a decentralized (ad hoc) network where each receiver provides feedback to its respective transmitter. We derive closed-form expressions for the outage probability, network throughput, transmission capacity, and average achievable rate and go on to quantify the degradation in network performance due to residual self-interference as a function of key system parameters. One particular finding is that as in the classical broadcast channel, the per-user feedback rate must increase linearly with the number of transmit antennas and SINR (in dB) for the full multiplexing gains to be preserved with limited feedback. We derive the throughput-maximizing number of streams, establishing that single-stream transmission is optimal in most practically relevant settings. In short, SDMA does not appear to be a prudent design choice for interference-limited wireless networks.Comment: Submitted to IEEE Transactions on Wireless Communication
    corecore