5,036 research outputs found

    Cross-layer design of multi-hop wireless networks

    Get PDF
    MULTI -hop wireless networks are usually defined as a collection of nodes equipped with radio transmitters, which not only have the capability to communicate each other in a multi-hop fashion, but also to route each others’ data packets. The distributed nature of such networks makes them suitable for a variety of applications where there are no assumed reliable central entities, or controllers, and may significantly improve the scalability issues of conventional single-hop wireless networks. This Ph.D. dissertation mainly investigates two aspects of the research issues related to the efficient multi-hop wireless networks design, namely: (a) network protocols and (b) network management, both in cross-layer design paradigms to ensure the notion of service quality, such as quality of service (QoS) in wireless mesh networks (WMNs) for backhaul applications and quality of information (QoI) in wireless sensor networks (WSNs) for sensing tasks. Throughout the presentation of this Ph.D. dissertation, different network settings are used as illustrative examples, however the proposed algorithms, methodologies, protocols, and models are not restricted in the considered networks, but rather have wide applicability. First, this dissertation proposes a cross-layer design framework integrating a distributed proportional-fair scheduler and a QoS routing algorithm, while using WMNs as an illustrative example. The proposed approach has significant performance gain compared with other network protocols. Second, this dissertation proposes a generic admission control methodology for any packet network, wired and wireless, by modeling the network as a black box, and using a generic mathematical 0. Abstract 3 function and Taylor expansion to capture the admission impact. Third, this dissertation further enhances the previous designs by proposing a negotiation process, to bridge the applications’ service quality demands and the resource management, while using WSNs as an illustrative example. This approach allows the negotiation among different service classes and WSN resource allocations to reach the optimal operational status. Finally, the guarantees of the service quality are extended to the environment of multiple, disconnected, mobile subnetworks, where the question of how to maintain communications using dynamically controlled, unmanned data ferries is investigated

    On-line schedulability tests for adaptive reservations in fixed priority scheduling

    Get PDF
    Adaptive reservation is a real-time scheduling technique in which each application is associated a fraction of the computational resource (a reservation) that can be dynamically adapted to the varying requirements of the application by using appropriate feedback control algorithms. An adaptive reservation is typically implemented by using an aperiodic server (e.g. sporadic server) algorithm with fixed period and variable budget. When the feedback law demands an increase of the reservation budget, the system must run a schedulability test to check if there is enough spare bandwidth to accommodate such increase. The schedulability test must be very fast, as it may be performed at each budget update, i.e. potentially at each instance of a task; yet, it must be as efficient as possible, to maximize resource usage. In this paper, we tackle the problem of performing an efficient on-line schedulability test for adaptive resource reservations in fixed priority schedulers. In the literature, a number of algorithms have been proposed for on-line admission control in fixed priority systems. We describe four of these tests, with increasing complexity and performance. In addition, we propose a novel on-line test, called Spare-Pot al- gorithm, which has been specifically designed for the problem at hand, and which shows a good cost/performance ratio compared to the other tests

    Modeling, Analysis, and Hard Real-time Scheduling of Adaptive Streaming Applications

    Get PDF
    In real-time systems, the application's behavior has to be predictable at compile-time to guarantee timing constraints. However, modern streaming applications which exhibit adaptive behavior due to mode switching at run-time, may degrade system predictability due to unknown behavior of the application during mode transitions. Therefore, proper temporal analysis during mode transitions is imperative to preserve system predictability. To this end, in this paper, we initially introduce Mode Aware Data Flow (MADF) which is our new predictable Model of Computation (MoC) to efficiently capture the behavior of adaptive streaming applications. Then, as an important part of the operational semantics of MADF, we propose the Maximum-Overlap Offset (MOO) which is our novel protocol for mode transitions. The main advantage of this transition protocol is that, in contrast to self-timed transition protocols, it avoids timing interference between modes upon mode transitions. As a result, any mode transition can be analyzed independently from the mode transitions that occurred in the past. Based on this transition protocol, we propose a hard real-time analysis as well to guarantee timing constraints by avoiding processor overloading during mode transitions. Therefore, using this protocol, we can derive a lower bound and an upper bound on the earliest starting time of the tasks in the new mode during mode transitions in such a way that hard real-time constraints are respected.Comment: Accepted for presentation at EMSOFT 2018 and for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems (TCAD) as part of the ESWEEK-TCAD special issu

    Energy-efficient wireless communication

    Get PDF
    In this chapter we present an energy-efficient highly adaptive network interface architecture and a novel data link layer protocol for wireless networks that provides Quality of Service (QoS) support for diverse traffic types. Due to the dynamic nature of wireless networks, adaptations in bandwidth scheduling and error control are necessary to achieve energy efficiency and an acceptable quality of service. In our approach we apply adaptability through all layers of the protocol stack, and provide feedback to the applications. In this way the applications can adapt the data streams, and the network protocols can adapt the communication parameters

    A Practical Comparison of Scheduling Algorithms for Mixed Criticality Embedded Systems

    Get PDF
    With the consolidation of automotive control processes onto single highperformance ECUs the issue of running, and thus scheduling, processes of varying criticality on a single CPU has moved to the fore. This has resulted in a number of new algorithms for scheduling such systems, for example Adaptive Mixed Criticality (AMC). This project attempts to measure the performance of some of these algorithms on a singlecore embedded system CPU and compares them in order to shed some light on their different advantages and disadvantages
    • …
    corecore