2,237 research outputs found

    Exact Inference on Gaussian Graphical Models of Arbitrary Topology using Path-Sums

    Full text link
    We present the path-sum formulation for exact statistical inference of marginals on Gaussian graphical models of arbitrary topology. The path-sum formulation gives the covariance between each pair of variables as a branched continued fraction of finite depth and breadth. Our method originates from the closed-form resummation of infinite families of terms of the walk-sum representation of the covariance matrix. We prove that the path-sum formulation always exists for models whose covariance matrix is positive definite: i.e.~it is valid for both walk-summable and non-walk-summable graphical models of arbitrary topology. We show that for graphical models on trees the path-sum formulation is equivalent to Gaussian belief propagation. We also recover, as a corollary, an existing result that uses determinants to calculate the covariance matrix. We show that the path-sum formulation formulation is valid for arbitrary partitions of the inverse covariance matrix. We give detailed examples demonstrating our results

    Arriving on time: estimating travel time distributions on large-scale road networks

    Full text link
    Most optimal routing problems focus on minimizing travel time or distance traveled. Oftentimes, a more useful objective is to maximize the probability of on-time arrival, which requires statistical distributions of travel times, rather than just mean values. We propose a method to estimate travel time distributions on large-scale road networks, using probe vehicle data collected from GPS. We present a framework that works with large input of data, and scales linearly with the size of the network. Leveraging the planar topology of the graph, the method computes efficiently the time correlations between neighboring streets. First, raw probe vehicle traces are compressed into pairs of travel times and number of stops for each traversed road segment using a `stop-and-go' algorithm developed for this work. The compressed data is then used as input for training a path travel time model, which couples a Markov model along with a Gaussian Markov random field. Finally, scalable inference algorithms are developed for obtaining path travel time distributions from the composite MM-GMRF model. We illustrate the accuracy and scalability of our model on a 505,000 road link network spanning the San Francisco Bay Area

    Polynomial Linear Programming with Gaussian Belief Propagation

    Full text link
    Interior-point methods are state-of-the-art algorithms for solving linear programming (LP) problems with polynomial complexity. Specifically, the Karmarkar algorithm typically solves LP problems in time O(n^{3.5}), where nn is the number of unknown variables. Karmarkar's celebrated algorithm is known to be an instance of the log-barrier method using the Newton iteration. The main computational overhead of this method is in inverting the Hessian matrix of the Newton iteration. In this contribution, we propose the application of the Gaussian belief propagation (GaBP) algorithm as part of an efficient and distributed LP solver that exploits the sparse and symmetric structure of the Hessian matrix and avoids the need for direct matrix inversion. This approach shifts the computation from realm of linear algebra to that of probabilistic inference on graphical models, thus applying GaBP as an efficient inference engine. Our construction is general and can be used for any interior-point algorithm which uses the Newton method, including non-linear program solvers.Comment: 7 pages, 1 figure, appeared in the 46th Annual Allerton Conference on Communication, Control and Computing, Allerton House, Illinois, Sept. 200
    • …
    corecore