1,958 research outputs found

    Enumeration of minimal acyclic automata via generalized parking functions

    Get PDF
    We give an exact enumerative formula for the minimal acyclic deterministic finite automata. This formula is obtained from a bijection between a family of generalized parking functions and the transitions functions of acyclic automata

    Random Generation and Enumeration of Accessible Determinisitic Real-time Pushdown Automata

    Get PDF
    This papers presents a general framework for the uniform random generation of deterministic real-time accessible pushdown automata. A polynomial time algorithm to randomly generate a pushdown automaton having a fixed stack operations total size is proposed. The influence of the accepting condition (empty stack, final state) on the reachability of the generated automata is investigated.Comment: Frank Drewes. CIAA 2015, Aug 2015, Umea, Sweden. Springer, 9223, pp.12, 2015, Implementation and Application of Automata - 20th International Conferenc

    Incremental construction of minimal acyclic finite-state automata

    Get PDF
    In this paper, we describe a new method for constructing minimal, deterministic, acyclic finite-state automata from a set of strings. Traditional methods consist of two phases: the first to construct a trie, the second one to minimize it. Our approach is to construct a minimal automaton in a single phase by adding new strings one by one and minimizing the resulting automaton on-the-fly. We present a general algorithm as well as a specialization that relies upon the lexicographical ordering of the input strings.Comment: 14 pages, 7 figure

    Adaptive Homing is in P

    Get PDF
    Homing preset and adaptive experiments with Finite State Machines (FSMs) are widely used when a non-initialized discrete event system is given for testing and thus, has to be set to the known state at the first step. The length of a shortest homing sequence is known to be exponential with respect to the number of states for a complete observable nondeterministic FSM while the problem of checking the existence of such sequence (Homing problem) is PSPACE-complete. In order to decrease the complexity of related problems, one can consider adaptive experiments when a next input to be applied to a system under experiment depends on the output responses to the previous inputs. In this paper, we study the problem of the existence of an adaptive homing experiment for complete observable nondeterministic machines. We show that if such experiment exists then it can be constructed with the use of a polynomial-time algorithm with respect to the number of FSM states.Comment: In Proceedings MBT 2015, arXiv:1504.0192

    Propagating Regular Counting Constraints

    Full text link
    Constraints over finite sequences of variables are ubiquitous in sequencing and timetabling. Moreover, the wide variety of such constraints in practical applications led to general modelling techniques and generic propagation algorithms, often based on deterministic finite automata (DFA) and their extensions. We consider counter-DFAs (cDFA), which provide concise models for regular counting constraints, that is constraints over the number of times a regular-language pattern occurs in a sequence. We show how to enforce domain consistency in polynomial time for atmost and atleast regular counting constraints based on the frequent case of a cDFA with only accepting states and a single counter that can be incremented by transitions. We also prove that the satisfaction of exact regular counting constraints is NP-hard and indicate that an incomplete algorithm for exact regular counting constraints is faster and provides more pruning than the existing propagator from [3]. Regular counting constraints are closely related to the CostRegular constraint but contribute both a natural abstraction and some computational advantages.Comment: Includes a SICStus Prolog source file with the propagato

    Test Derivation from Timed Automata

    Get PDF
    A real-time system is a discrete system whose state changes occur in real-numbered time [AH97]. For testing real-time systems, specification languages must be extended with constructs for expressing real-time constraints, the implementation relation must be generalized to consider the temporal dimension, and the data structures and algorithms used to generate tests must be revised to operate on a potentially infinite set of states

    On the Uniform Random Generation of Determinisitic Partially Ordered Automata using Monte Carlo Techniques

    Get PDF
    Partially ordered automata are finite automata admitting no simple loops of length greater than or equal to 2. In this paper we show how to randomly and uniformly generate deterministic accessible partially ordered automata using Monte-Carlo techniques
    corecore