192 research outputs found

    QoS Routing with worst-case delay constraints: models, algorithms and performance analysis

    Get PDF
    In a network where weighted fair-queueing schedulers are used at each link, a flow is guaranteed an end-to-end worst-case delays which depends on the rate reserved for it at each link it traverses. Therefore, it is possible to compute resource-constrained paths that meet target delay constraints, and optimize some key performance metrics (e.g., minimize the overall reserved rate, maximize the remaining capacity at bottleneck links, etc.). Despite the large amount of literature that has appeared on weighted fair-queueing schedulers since the mid '90s, this has so far been done only for a single type of scheduler, probably because the complexity of solving the problem in general appeared forbidding. In this paper, we formulate and solve the optimal path computation and resource allocation problem for a broad category of weighted fair-queueing schedulers, from those emulating a Generalized Processor Sharing fluid server to variants of Deficit Round Robin. We classify schedulers according to their latency expressions, and show that a significant divide exists between those where routing a new flow affects the performance of existing flows, and those for which this do not happen. For the former, explicit admission control constraints are required to ensure that existing flows still meet their deadline afterwards. However, despite this major difference and the differences among categories of schedulers, the problem can always be formulated as a Mixed-Integer Second-Order Cone problem (MI-SOCP), and be solved at optimality in split-second times even in fairly large networks

    A survey on the chronological evolution of timestamp schedulers in packet switching networks

    Get PDF
    The interest in solving the issue of congestion or flow control in network established from the first discovery and increase popularity of the Internet in 1967 or earlier. As the use of the network deployed and the popularity increase, the issue grows and the demand for an optimal or tentative solution becomes obvious. Since that time there has been an intensive effort from the scholars and researchers to solve the congestion control problem. The problem get worse by the engagement of novel traffic with different characteristics for application called realtime applications such as video and voice applications. Another cause of this demand is the user himself. The attempt in solving the congestion problem in network layer was popular in 90’s.This article will demonstrate chronologically how the attempts toward timestamp based scheduling in the packet-switch network have been evolved.Furthermore, the benefit and the drawbacks of using a mechanism will be presented. Also, a brief explanation of the mathematical, conceptual or implementation issue of a mechanism is given. The key success of the scheduler in the market will be highlighted. This paper will stimulate the research thinking to identify the importance and the ability of scheduling in routers to enhance quality of service (QoS) for real time application over other solution in several layers. In addition it will assist the researcher to distinguish the key failure of other proposed mechanisms which have not been implemented in real routers

    Fair Queueing based Packet Scheduling for Buffered Crossbar Switches

    Get PDF
    Abstract-Recent development in VLSI technology makes it feasible to integrate on-chip memories to crossbar switching fabrics. Switches using such crossbars are called buffered crossbar switches, in which each crosspoint has a small exclusive buffer. The crosspoint buffers decouple input ports and output ports, and reduce the switch scheduling problem to the fair queueing problem. In this paper, we present the fair queueing based packet scheduling scheme for buffered crossbar switches, which requires no speedup and directly handles variable length packets without segmentation and reassembly (SAR). The presented scheme makes scheduling decisions in a distributed manner, and provides performance guarantees. Given the properties of the actual fair queueing algorithm used in the scheduling scheme, we calculate the crosspoint buffer size bound to avoid overflow, and analyze the fairness and delay guarantees provided by the scheduling scheme. In addition, we use WF 2 Q, the fair queueing algorithm with the tightest performance guarantees, as a case study, and present simulation data to verify the analytical results

    Design and Performance of Scalable High-Performance Programmable Routers - Doctoral Dissertation, August 2002

    Get PDF
    The flexibility to adapt to new services and protocols without changes in the underlying hardware is and will increasingly be a key requirement for advanced networks. Introducing a processing component into the data path of routers and implementing packet processing in software provides this ability. In such a programmable router, a powerful processing infrastructure is necessary to achieve to level of performance that is comparable to custom silicon-based routers and to demonstrate the feasibility of this approach. This work aims at the general design of such programmable routers and, specifically, at the design and performance analysis of the processing subsystem. The necessity of programmable routers is motivated, and a router design is proposed. Based on the design, a general performance model is developed and quantitatively evaluated using a new network processor benchmark. Operational challenges, like scheduling of packets to processing engines, are addressed, and novel algorithms are presented. The results of this work give qualitative and quantitative insights into this new domain that combines issues from networking, computer architecture, and system design

    Statistical Service Guarantees for Traffic Scheduling in High-Speed Data Networks

    Get PDF
    School of Electrical and Computer Engineerin

    Prediction-based techniques for the optimization of mobile networks

    Get PDF
    Mención Internacional en el título de doctorMobile cellular networks are complex system whose behavior is characterized by the superposition of several random phenomena, most of which, related to human activities, such as mobility, communications and network usage. However, when observed in their totality, the many individual components merge into more deterministic patterns and trends start to be identifiable and predictable. In this thesis we analyze a recent branch of network optimization that is commonly referred to as anticipatory networking and that entails the combination of prediction solutions and network optimization schemes. The main intuition behind anticipatory networking is that knowing in advance what is going on in the network can help understanding potentially severe problems and mitigate their impact by applying solution when they are still in their initial states. Conversely, network forecast might also indicate a future improvement in the overall network condition (i.e. load reduction or better signal quality reported from users). In such a case, resources can be assigned more sparingly requiring users to rely on buffered information while waiting for the better condition when it will be more convenient to grant more resources. In the beginning of this thesis we will survey the current anticipatory networking panorama and the many prediction and optimization solutions proposed so far. In the main body of the work, we will propose our novel solutions to the problem, the tools and methodologies we designed to evaluate them and to perform a real world evaluation of our schemes. By the end of this work it will be clear that not only is anticipatory networking a very promising theoretical framework, but also that it is feasible and it can deliver substantial benefit to current and next generation mobile networks. In fact, with both our theoretical and practical results we show evidences that more than one third of the resources can be saved and even larger gain can be achieved for data rate enhancements.Programa Oficial de Doctorado en Ingeniería TelemáticaPresidente: Albert Banchs Roca.- Presidente: Pablo Serrano Yañez-Mingot.- Secretario: Jorge Ortín Gracia.- Vocal: Guevara Noubi

    Evaluation of Incentive-compatible Differentiated Scheduling for Packet-switched Networks

    Get PDF
    Communication applications have diverse network service requirements. For instance, Voice over IP (VoIP) demands short end-to-end delay, whereas File Transfer Protocol (FTP) benefits more from high throughput than short delay. However, the Internet delivers a uniform best-effort service. As a result, much research has been conducted to enhance the Internet to provide service differentiation. Most of the existing proposals require additional access-control mechanisms, such as admission control and pricing, which are complicated to implement and render these proposals not incrementally deployable. Incentive-compatible Differentiated Scheduling (ICDS) provides incentives for applications to choose a service class according to their burst characteristics without additional access-control mechanisms. This thesis investigates the behaviour of ICDS with different types of traffic by analysis and extensive simulations. The results show some evidences that ICDS can achieve its design goal. In addition, this thesis revises the initial ICDS algorithm to provide fast convergence for TCP traffic

    Quality-of-service management in IP networks

    Get PDF
    Quality of Service (QoS) in Internet Protocol (IF) Networks has been the subject of active research over the past two decades. Integrated Services (IntServ) and Differentiated Services (DiffServ) QoS architectures have emerged as proposed standards for resource allocation in IF Networks. These two QoS architectures support the need for multiple traffic queuing systems to allow for resource partitioning for heterogeneous applications making use of the networks. There have been a number of specifications or proposals for the number of traffic queuing classes (Class of Service (CoS)) that will support integrated services in IF Networks, but none has provided verification in the form of analytical or empirical investigation to prove that its specification or proposal will be optimum. Despite the existence of the two standard QoS architectures and the large volume of research work that has been carried out on IF QoS, its deployment still remains elusive in the Internet. This is not unconnected with the complexities associated with some aspects of the standard QoS architectures. [Continues.
    • …
    corecore