660 research outputs found

    Robustness Verification of Support Vector Machines

    Get PDF
    We study the problem of formally verifying the robustness to adversarial examples of support vector machines (SVMs), a major machine learning model for classification and regression tasks. Following a recent stream of works on formal robustness verification of (deep) neural networks, our approach relies on a sound abstract version of a given SVM classifier to be used for checking its robustness. This methodology is parametric on a given numerical abstraction of real values and, analogously to the case of neural networks, needs neither abstract least upper bounds nor widening operators on this abstraction. The standard interval domain provides a simple instantiation of our abstraction technique, which is enhanced with the domain of reduced affine forms, which is an efficient abstraction of the zonotope abstract domain. This robustness verification technique has been fully implemented and experimentally evaluated on SVMs based on linear and nonlinear (polynomial and radial basis function) kernels, which have been trained on the popular MNIST dataset of images and on the recent and more challenging Fashion-MNIST dataset. The experimental results of our prototype SVM robustness verifier appear to be encouraging: this automated verification is fast, scalable and shows significantly high percentages of provable robustness on the test set of MNIST, in particular compared to the analogous provable robustness of neural networks

    Newton-type Alternating Minimization Algorithm for Convex Optimization

    Full text link
    We propose NAMA (Newton-type Alternating Minimization Algorithm) for solving structured nonsmooth convex optimization problems where the sum of two functions is to be minimized, one being strongly convex and the other composed with a linear mapping. The proposed algorithm is a line-search method over a continuous, real-valued, exact penalty function for the corresponding dual problem, which is computed by evaluating the augmented Lagrangian at the primal points obtained by alternating minimizations. As a consequence, NAMA relies on exactly the same computations as the classical alternating minimization algorithm (AMA), also known as the dual proximal gradient method. Under standard assumptions the proposed algorithm possesses strong convergence properties, while under mild additional assumptions the asymptotic convergence is superlinear, provided that the search directions are chosen according to quasi-Newton formulas. Due to its simplicity, the proposed method is well suited for embedded applications and large-scale problems. Experiments show that using limited-memory directions in NAMA greatly improves the convergence speed over AMA and its accelerated variant

    Precise Multi-Neuron Abstractions for Neural Network Certification

    Full text link
    Formal verification of neural networks is critical for their safe adoption in real-world applications. However, designing a verifier which can handle realistic networks in a precise manner remains an open and difficult challenge. In this paper, we take a major step in addressing this challenge and present a new framework, called PRIMA, that computes precise convex approximations of arbitrary non-linear activations. PRIMA is based on novel approximation algorithms that compute the convex hull of polytopes, leveraging concepts from computational geometry. The algorithms have polynomial complexity, yield fewer constraints, and minimize precision loss. We evaluate the effectiveness of PRIMA on challenging neural networks with ReLU, Sigmoid, and Tanh activations. Our results show that PRIMA is significantly more precise than the state-of-the-art, verifying robustness for up to 16%, 30%, and 34% more images than prior work on ReLU-, Sigmoid-, and Tanh-based networks, respectively

    Efficient Symbolic Reasoning for Neural-Network Verification

    Full text link
    The neural network has become an integral part of modern software systems. However, they still suffer from various problems, in particular, vulnerability to adversarial attacks. In this work, we present a novel program reasoning framework for neural-network verification, which we refer to as symbolic reasoning. The key components of our framework are the use of the symbolic domain and the quadratic relation. The symbolic domain has very flexible semantics, and the quadratic relation is quite expressive. They allow us to encode many verification problems for neural networks as quadratic programs. Our scheme then relaxes the quadratic programs to semidefinite programs, which can be efficiently solved. This framework allows us to verify various neural-network properties under different scenarios, especially those that appear challenging for non-symbolic domains. Moreover, it introduces new representations and perspectives for the verification tasks. We believe that our framework can bring new theoretical insights and practical tools to verification problems for neural networks
    • …
    corecore