221 research outputs found

    Formal Proofs for Nonlinear Optimization

    Get PDF
    We present a formally verified global optimization framework. Given a semialgebraic or transcendental function ff and a compact semialgebraic domain KK, we use the nonlinear maxplus template approximation algorithm to provide a certified lower bound of ff over KK. This method allows to bound in a modular way some of the constituents of ff by suprema of quadratic forms with a well chosen curvature. Thus, we reduce the initial goal to a hierarchy of semialgebraic optimization problems, solved by sums of squares relaxations. Our implementation tool interleaves semialgebraic approximations with sums of squares witnesses to form certificates. It is interfaced with Coq and thus benefits from the trusted arithmetic available inside the proof assistant. This feature is used to produce, from the certificates, both valid underestimators and lower bounds for each approximated constituent. The application range for such a tool is widespread; for instance Hales' proof of Kepler's conjecture yields thousands of multivariate transcendental inequalities. We illustrate the performance of our formal framework on some of these inequalities as well as on examples from the global optimization literature.Comment: 24 pages, 2 figures, 3 table

    Rounding Sum-of-Squares Relaxations

    Get PDF
    We present a general approach to rounding semidefinite programming relaxations obtained by the Sum-of-Squares method (Lasserre hierarchy). Our approach is based on using the connection between these relaxations and the Sum-of-Squares proof system to transform a *combining algorithm* -- an algorithm that maps a distribution over solutions into a (possibly weaker) solution -- into a *rounding algorithm* that maps a solution of the relaxation to a solution of the original problem. Using this approach, we obtain algorithms that yield improved results for natural variants of three well-known problems: 1) We give a quasipolynomial-time algorithm that approximates the maximum of a low degree multivariate polynomial with non-negative coefficients over the Euclidean unit sphere. Beyond being of interest in its own right, this is related to an open question in quantum information theory, and our techniques have already led to improved results in this area (Brand\~{a}o and Harrow, STOC '13). 2) We give a polynomial-time algorithm that, given a d dimensional subspace of R^n that (almost) contains the characteristic function of a set of size n/k, finds a vector vv in the subspace satisfying v44>c(k/d1/3)v22|v|_4^4 > c(k/d^{1/3}) |v|_2^2, where vp=(Eivip)1/p|v|_p = (E_i v_i^p)^{1/p}. Aside from being a natural relaxation, this is also motivated by a connection to the Small Set Expansion problem shown by Barak et al. (STOC 2012) and our results yield a certain improvement for that problem. 3) We use this notion of L_4 vs. L_2 sparsity to obtain a polynomial-time algorithm with substantially improved guarantees for recovering a planted μ\mu-sparse vector v in a random d-dimensional subspace of R^n. If v has mu n nonzero coordinates, we can recover it with high probability whenever μ<O(min(1,n/d2))\mu < O(\min(1,n/d^2)), improving for d<n2/3d < n^{2/3} prior methods which intrinsically required μ<O(1/(d))\mu < O(1/\sqrt(d))

    Stability and Performance Verification of Optimization-based Controllers

    Get PDF
    This paper presents a method to verify closed-loop properties of optimization-based controllers for deterministic and stochastic constrained polynomial discrete-time dynamical systems. The closed-loop properties amenable to the proposed technique include global and local stability, performance with respect to a given cost function (both in a deterministic and stochastic setting) and the L2\mathcal{L}_2 gain. The method applies to a wide range of practical control problems: For instance, a dynamical controller (e.g., a PID) plus input saturation, model predictive control with state estimation, inexact model and soft constraints, or a general optimization-based controller where the underlying problem is solved with a fixed number of iterations of a first-order method are all amenable to the proposed approach. The approach is based on the observation that the control input generated by an optimization-based controller satisfies the associated Karush-Kuhn-Tucker (KKT) conditions which, provided all data is polynomial, are a system of polynomial equalities and inequalities. The closed-loop properties can then be analyzed using sum-of-squares (SOS) programming

    Practical polynomial optimization through positivity certificates with and without denominators

    Get PDF
    Les certificats de positivité ou Positivstellens"atze fournissent des représentations de polynômes positifs sur des ensembles semialgébriques de basiques, c'est-à-dire des ensembles définis par un nombre fini d'inégalités polynomiales. Le célèbre Positivstellensatz de Putinar stipule que tout polynôme positif sur un ensemble semialgébrique basique fermé SS peut être écrit comme une combinaison pondérée linéaire des polynômes décrivant SS, sous une certaine condition sur SS légèrement plus forte que la compacité. Lorsqu'il est écrit comme ceci, il devient évident que le polynôme est positif sur SS, et donc cette description alternative fournit un certificat de positivité sur SS. De plus, comme les poids polynomiaux impliqués dans le Positivstellensatz de Putinar sont des sommes de carrés (SOS), de tels certificats de positivité permettent de concevoir des relaxations convexes basées sur la programmation semidéfinie pour résoudre des problèmes d'optimisation polynomiale (POP) qui surviennent dans diverses applications réelles, par exemple dans la gestion des réseaux d'énergie et l'apprentissage automatique pour n'en citer que quelques unes. Développée à l'origine par Lasserre, la hiérarchie des relaxations semidéfinies basée sur le Positivstellensatz de Putinar est appelée la emph{hiérarchie Moment-SOS}. Dans cette thèse, nous proposons des méthodes d'optimisation polynomiale basées sur des certificats de positivité impliquant des poids SOS spécifiques, sans ou avec dénominateurs.Positivity certificates or Positivstellens"atze provide representations of polynomials positive on basic semialgebraic sets, i.e., sets defined by finitely many polynomial inequalities. The famous Putinar's Positivstellensatz states that every positive polynomial on a basic closed semialgebraic set SS can be written as a linear weighted combination of the polynomials describing SS, under a certain condition on SS slightly stronger than compactness. When written in this it becomes obvious that the polynomial is positive on SS, and therefore this alternative description provides a certificate of positivity on SS. Moreover, as the polynomial weights involved in Putinar's Positivstellensatz are sums of squares (SOS), such Positivity certificates enable to design convex relaxations based on semidefinite programming to solve polynomial optimization problems (POPs) that arise in various real-life applications, e.g., in management of energy networks and machine learning to cite a few. Originally developed by Lasserre, the hierarchy of semidefinite relaxations based on Putinar's Positivstellensatz is called the emph{Moment-SOS hierarchy}. In this thesis, we provide polynomial optimization methods based on positivity certificates involving specific SOS weights, without or with denominators

    Rational Dual Certificates for Weighted Sums-of-Squares Polynomials with Boundable Bit Size

    Full text link
    In (Davis and Papp, 2022), the authors introduced the concept of dual certificates of sum-of-squares polynomials, which are vectors from the dual cone of the cone of weighted sums of squares (WSOS) polynomials that can be interpreted as WSOS nonnegativity certificates. This initial theoretical work showed that for every polynomial in the interior of a WSOS cone, there exists a rational dual certificate proving that the polynomial is WSOS. In this article, we analyze the complexity of rational dual certificates of WSOS polynomials by bounding the bit sizes of integer dual certificates as a function of parameters such as the degree and the number of variables of the polynomials, or their distance from the boundary of the cone. After providing a general bound, we explore a number of special cases, such as univariate polynomials nonnegative over the real line or a bounded interval, represented in different commonly used bases. We also provide an algorithm which runs in rational arithmetic and computes a rational certificate with boundable bit size for a WSOS lower bound of the input polynomial.Comment: Submitted for publicatio
    corecore