136 research outputs found

    Thermal and Electrical Parasitic Modeling for Multi-Chip Power Module Layout Synthesis

    Get PDF
    This thesis presents thermal and electrical parasitic modeling approaches for layout synthesis of Multi-Chip Power Modules (MCPMs). MCPMs integrate power semiconductor devices and drive electronics into a single package. As the switching frequency of power devices increases, the size of the passive components are greatly reduced leading to gains in efficiency and cost reduction. In order to increase switching frequency, electrical parasitics in MCPMs need to be reduced through tighter electronic integrations and smaller packages. As package size is decreased, temperature increases due to less heat dissipation capability. Thus, it is crucial to consider both thermal and electrical parasitics in order to avoid premature device failure. Traditionally, the evaluation of the temperature and electrical parasitics of an MCPM requires the layout to be changed iteratively by hand and verified via finite element analysis (FEA) tools. The novel thermal and electrical parasitics models developed in this thesis predict temperature and electrical parasitics of an MCPM according to varied layouts. Multi-Objective optimization methods are applied to the models to find optimal layouts and tradeoffs of MCPM layouts

    Computation of power plane pair inductance, measurement of multiple switching current components and switching current measurement for multiple ICs with an island structure

    Get PDF
    The first part of the thesis presents the computation of power / ground plane pair inductance based on Partial Element Equivalent Circuit (PEEC) method in power distribution network (PDN) design. An efficient approach for the inductance computation is investigated. Speed-up techniques are employed include using the faster decay of mutual coupling due to the differential currents (same magnitude but opposite directions) in the two planes. Also, an approximate rectangular mesh reduction method is introduced which allows a local increase in mesh density. The second part presents a measurement-based data-processing approach to obtain parameters of multiple current components through a bulk decoupling capacitor for power integrity studies. A lab-made low-cost current probe is developed to measure the induced voltage due to the time-varying switching current. Then, a post data-processing procedure is introduced to separate and obtain the parameters of multiple current components. The third part proposes a measurement methodology, when IC information is not available, to obtain the equivalent switching current of each IC in the case where multiple ICs are connected to a common power island structure. Time-domain oscilloscope measurements are used to capture the noise-voltage waveforms at a few locations in the power island. Combining with the multi-port frequency-domain S-parameter measurement among the same locations, an equivalent switching current for each IC is calculated. The proposed method is validated at a different location in the power island by comparing the calculated noise voltage using the equivalent switching currents as excitations with the actual measured noise voltage --Abstract, page iv

    Modeling and characterization of on-chip interconnects, inductors and transformers

    Get PDF
    Ph.DNUS-SUPELEC JOINT PH.D. PROGRAMM

    Skin-Effect Loss Models for Time- and Frequency-Domain PEEC Solver

    Get PDF
    published_or_final_versio

    Modelling and analysis of crosstalk in scaled CMOS interconnects

    Get PDF
    The development of a general coupled RLC interconnect model for simulating scaled bus structures m VLSI is presented. Several different methods for extracting submicron resistance, inductance and capacitance parameters are documented. Realistic scaling dimensions for deep submicron design rules are derived and used within the model. Deep submicron HSPICE device models are derived through the use of constant-voltage scaling theory on existing 0.75µm and 1.0µm models to create accurate interconnect bus drivers. This complete model is then used to analyse crosstalk noise and delay effects on multiple scaling levels to determine the dependence of crosstalk on scaling level. Using this data, layout techniques and processing methods are suggested to reduce crosstalk in system
    corecore