11 research outputs found

    Distributed space-time block coding in wireless cooperative communications.

    Get PDF
    Cheng Ho Ting.Thesis (M.Phil.)--Chinese University of Hong Kong, 2005.Includes bibliographical references (leaves 90-93).Abstracts in English and Chinese.Abstract --- p.iAcknowledgement --- p.ivChapter 1 --- Introduction --- p.1Chapter 1.1 --- Overview of Wireless Cooperative Communications --- p.1Chapter 1.2 --- Motivation --- p.2Chapter 1.3 --- Distributed Space-Time Block Coding --- p.4Chapter 1.4 --- Imperfect Channel Estimation --- p.4Chapter 1.5 --- Time-Varying Channels --- p.4Chapter 1.6 --- Outline of the thesis --- p.5Chapter 2 --- Background Study --- p.6Chapter 3 --- Distributed Space-Time Block Coding --- p.13Chapter 3.1 --- Introduction --- p.13Chapter 3.2 --- System Model --- p.13Chapter 3.3 --- BER Analysis by Characteristic Equations --- p.16Chapter 3.4 --- BER Analysis by Error Terms --- p.18Chapter 3.4.1 --- Non-fading R→D link --- p.19Chapter 3.4.2 --- Fading R→D link --- p.19Chapter 3.5 --- Performance --- p.20Chapter 3.5.1 --- Accuracy of Analytical Expressions --- p.20Chapter 3.5.2 --- Observation of Second-order Diversity --- p.21Chapter 3.6 --- Summary --- p.22Chapter 4 --- Distributed Space-Time Block Coding with Imperfect Channel Estimation --- p.31Chapter 4.1 --- Introduction --- p.31Chapter 4.2 --- System Model --- p.32Chapter 4.3 --- BER Analysis --- p.32Chapter 4.3.1 --- Non-fading R→D link --- p.33Chapter 4.3.2 --- Fading R→D link --- p.34Chapter 4.4 --- Numerical Results --- p.34Chapter 4.5 --- Summary --- p.36Chapter 5 --- Distributed Space-Time Block Coding with Time-Varying Channels --- p.43Chapter 5.1 --- Introduction --- p.43Chapter 5.2 --- System Model --- p.44Chapter 5.3 --- Pilot Symbol Assisted Modulation (PSAM) for DSTBC --- p.45Chapter 5.4 --- Reception Methods --- p.48Chapter 5.4.1 --- Maximum-Likelihood Detection (ML) in [29] --- p.48Chapter 5.4.2 --- Cooperative Maximum-Likelihood Detection (CML) --- p.50Chapter 5.4.3 --- Alamouti's Receiver (AR) --- p.51Chapter 5.4.4 --- Zero-forcing Linear Detection (ZF) --- p.51Chapter 5.4.5 --- Decision-feedback Detection (DF) --- p.52Chapter 5.5 --- BER Analysis for Time-varying Channels --- p.53Chapter 5.5.1 --- Quasi-Static Channels (p = 1) --- p.53Chapter 5.5.2 --- ZF: Uncorrelated Channel (p = 0) --- p.54Chapter 5.5.3 --- ZF: General Channel --- p.55Chapter 5.5.4 --- DF: General Channel --- p.56Chapter 5.6 --- Numerical Results --- p.57Chapter 5.7 --- Summary --- p.60Chapter 6 --- Conclusion and Future Work --- p.74Chapter 6.1 --- Conclusion --- p.74Chapter 6.2 --- Future Work --- p.76Chapter 6.2.1 --- Design of Code Matrix --- p.76Chapter 6.2.2 --- Adaptive Protocols --- p.77Chapter A --- Derivation of (3.23) --- p.79Chapter B --- Derivation of (3.30) and (3.32) --- p.83Chapter C --- Derivation of (4.9) and (4.13) --- p.85Chapter D --- Derivation of (5.68) --- p.88Bibliography --- p.9

    Wireless networks, diversity and space-time codes

    Get PDF
    We apply the idea of space-time coding devised for multiple-antenna systems to the problem of communications over wireless relay networks. A two-stage protocol is used, where in one stage the transmitter sends information and in the other, the relay nodes encode their received signals into a "distributed" linear dispersion code, and then transmit the coded signals to the receiver. We show that for high SNR the proposed system has a diversity of order α_0 min{T, R}, with T the coherence interval, R the number of relay nodes, and α0 the solution to the equation α + (log α)/(log P) = 1 - (log log P)/(log P), where P is the total transmit power in the network. In particular, we show that the pairwise error probability (PEP) decays no slower than ((log P)/P)^(min{T,R}). Thus, apart from the log P factor and assuming T ≥ R, the system has the same diversity as a multiple-antenna system with R transmit antennas and one receive antenna, which is the same as assuming that the R relay nodes can fully cooperate and have full knowledge of the transmit signal. We further show that for a fixed total transmit power across the entire network, the optimal power allocation is for the transmitter to expend half the power and for the relays to collectively expend the other half. We also show that at low and high SNR, the coding gain is the same as that of multiple-antenna systems. However, at intermediate SNR, it can be quite different. We discuss some of the ramifications of using different space-time codes and finally verify our analysis through the simulation or randomly generated distributed space-time codes

    Distributed space time block coding in asynchronous cooperative relay networks

    Get PDF
    The design and analysis of various distributed space time block coding schemes for asynchronous cooperative relay networks is considered in this thesis. Rayleigh frequency flat fading channels are assumed to model the links in the networks, and interference suppression techniques together with an orthogonal frequency division multiplexing type transmission approach are employed to mitigate the synchronization errors at the destination node induced by the different delays through the relay nodes. Closed-loop space time block coding is first considered in the context of decode-and-forward (regenerative) networks. In particular, quasi orthogonal and extended orthogonal coding techniques are employed for transmission from four relay nodes and parallel interference cancellation detection is exploited to mitigate synchronization errors. Availability of a direct link between the source and destination nodes is studied, and a new Alamouti space time block coding technique with parallel interference cancellation detection which does not require such a direct link connection and employs two relay nodes is proposed. Outer coding is then added to gain further improvement in end-to-end performance and amplify-and-forward (non regenerative) type networks together with distributed space time coding are considered to reduce relay node complexity. Novel detection schemes are then proposed for decode-and-forward networks with closed-loop extended orthogonal coding which reduce the computational complexity of the parallel interference cancellation. Both sub-optimum and near-optimum detectors are presented for relay nodes with single or dual antennas. End-to-end bit error rate simulations confirm the potential of the approaches and their ability to mitigate synchronization errors. A relay selection approach is also formulated which maximizes spatial diversity gain and attains robustness to timing errors. Finally, a new closed-loop distributed extended orthogonal space time block coding solution for amplify-and-forward type networks which minimizes the number of feedback bits by using a cyclic rotation phase is presented. This approach utilizes an orthogonal frequency division multiplexing type transmission structure with a cyclic prefix to mitigate synchronization errors. End-to-end bit error performance evaluations verify the efficacy of the scheme and its success in overcoming synchronization errors

    Distributed space time block coding and application in cooperative cognitive relay networks

    Get PDF
    The design and analysis of various distributed space time block coding schemes for cooperative relay networks is considered in this thesis. Rayleigh frequency flat and selective fading channels are assumed to model the links in the networks, and interference suppression techniques together with an orthogonal frequency division multiplexing (OFDM) type transmission approach are employed to mitigate synchronization errors at the destination node induced by the different delays through the relay nodes. Closed-loop space time block coding is first considered in the context of decode-and-forward (regenerative) networks. In particular, quasi orthogonal and extended orthogonal coding techniques are employed for transmission from four relay nodes and parallel interference cancellation detection is exploited to mitigate synchronization errors. Availability of a direct link between the source and destination nodes is studied. Outer coding is then added to gain further improvement in end-to-end performance and amplify-and-forward (non regenerative) type networks together with distributed space time coding are considered to reduce relay node complexity. A novel detection scheme is then proposed for decode-and-forward and amplify-and-forward networks with closed-loop extended orthogonal coding and closed-loop quasi-orthogonal coding which reduce the computational complexity of the parallel interference cancellation. The near-optimum detector is presented for relay nodes with single or dual antennas. End-to-end bit error rate simulations confirm the potential of the approach and its ability to mitigate synchronization errors

    Novel transmission schemes for application in two-way cooperative relay wireless communication networks

    Get PDF
    Recently, cooperative relay networks have emerged as an attractive communications technique that can generate a new form of spatial diversity which is known as cooperative diversity, that can enhance system reliability without sacrificing the scarce bandwidth resource or consuming more transmit power. To achieve cooperative diversity single-antenna terminals in a wireless relay network typically share their antennas to form a virtual antenna array on the basis of their distributed locations. As such, the same diversity gains as in multi-input multi-output systems can be achieved without requiring multiple-antenna terminals. However, there remain technical challenges to maximize the benefit of cooperative communications, e.g. data rate, asynchronous transmission, interference and outage. Therefore, the focus of this thesis is to exploit cooperative relay networks within two-way transmission schemes. Such schemes have the potential to double the data rate as compared to one-way transmission schemes. Firstly, a new approach to two-way cooperative communications via extended distributed orthogonal space-time block coding (E-DOSTBC) based on phase rotation feedback is proposed with four relay nodes. This scheme can achieve full cooperative diversity and full transmission rate in addition to array gain. Then, distributed orthogonal space-time block coding (DOSTBC) is applied within an asynchronous two-way cooperative wireless relay network using two relay nodes. A parallel interference cancelation (PIC) detection scheme with low structural and computational complexity is applied at the terminal nodes in order to overcome the effect of imperfect synchronization among the cooperative relay nodes. Next, a DOSTBC scheme based on cooperative orthogonal frequency division multiplexing (OFDM) type transmission is proposed for flat fading channels which can overcome imperfect synchronization in the network. As such, this technique can effectively cope with the effects of fading and timing errors. Moreover, to increase the end-to-end data rate, a closed-loop EDOSTBC approach using through a three-time slot framework is proposed. A full interference cancelation scheme with OFDM and cyclic prefix type transmission is used in a two-hop cooperative four relay network with asynchronism in the both hops to achieve full data rate and completely cancel the timing error. The topic of outage probability analysis in the context of multi-relay selection for one-way cooperative amplify and forward networks is then considered. Local measurements of the instantaneous channel conditions are used to select the best single and best two relays from a number of available relays. Asymptotical conventional polices are provided to select the best single and two relays from a number of available relays. Finally, the outage probability of a two-way amplify and forward relay network with best and Mth relay selection is analyzed. The relay selection is performed either on the basis of a max-min strategy or one based on maximizing exact end-to-end signal-to-noise ratio. MATLAB and Maple software based simulations are employed throughout the thesis to support the analytical results and assess the performance of new algorithms and methods

    Error performance analysis of n-ary Alamouti scheme with signal space diversity.

    Get PDF
    Masters Degree. University of KwaZulu-Natal, Durban.In this dissertation, a high-rate Alamouti scheme with Signal Space Diversity is developed to improve both the spectral efficiency and overall error performance in wireless communication links. This scheme uses high modulation techniques (M-ary quadrature amplitude modulation (M-QAM) and N-ary phase shift keying modulation (N-PSK)). Hence, this dissertation presents the mathematical models, design methodology and theoretical analysis of this high-rate Alamouti scheme with Signal Space Diversity.To improve spectral efficiency in multiple-input multiple-output (MIMO) wireless communications an N-ary Alamouti M-ary quadrature amplitude modulation (M-QAM) scheme is proposed in this thesis. The proposed N-ary Alamouti M-QAM Scheme uses N-ary phase shift keying modulation (NPSK) and M-QAM. The proposed scheme is investigated in Rayleigh fading channels with additive white Gaussian noise (AWGN). Based on union bound a theoretical average bit error probability (ABEP) of the system is formulated. The simulation results validate the theoretical ABEP. Both theoretical results and simulation results show that the proposed scheme improves spectral efficiency by 0.5 bit/sec/Hz in 2 × 4 16-PSK Alamouti 16-QAM system compared to the conventional Alamouti scheme (16-QAM). To further improve the error performance of the proposed N-ary Alamouti M-QAM Scheme an × N-ary Alamouti coded M-QAM scheme with signal space diversity (SSD) is also proposed in this thesis. In this thesis, based on the nearest neighbour (NN) approach a theoretical closed-form expression of the ABEP is further derived in Rayleigh fading channels. Simulation results also validate the theoretical ABEP for N-ary Alamouti M-QAM scheme with SSD. Both theoretical and simulation results further show that the 2 × 4 4-PSK Alamouti 256-QAM scheme with SSD can achieve 0.8 dB gain compared to the 2 × 4 4-PSK Alamouti 256-QAM scheme without SSD

    Distributed space-time block coding in cooperative relay networks with application in cognitive radio

    Get PDF
    Spatial diversity is an effective technique to combat the effects of severe fading in wireless environments. Recently, cooperative communications has emerged as an attractive communications paradigm that can introduce a new form of spatial diversity which is known as cooperative diversity, that can enhance system reliability without sacrificing the scarce bandwidth resource or consuming more transmit power. It enables single-antenna terminals in a wireless relay network to share their antennas to form a virtual antenna array on the basis of their distributed locations. As such, the same diversity gains as in multi-input multi-output systems can be achieved without requiring multiple-antenna terminals. In this thesis, a new approach to cooperative communications via distributed extended orthogonal space-time block coding (D-EO-STBC) based on limited partial feedback is proposed for cooperative relay networks with three and four relay nodes and then generalized for an arbitrary number of relay nodes. This scheme can achieve full cooperative diversity and full transmission rate in addition to array gain, and it has certain properties that make it alluring for practical systems such as orthogonality, flexibility, low computational complexity and decoding delay, and high robustness to node failure. Versions of the closed-loop D-EO-STBC scheme based on cooperative orthogonal frequency division multiplexing type transmission are also proposed for both flat and frequency-selective fading channels which can overcome imperfect synchronization in the network. As such, this proposed technique can effectively cope with the effects of fading and timing errors. Moreover, to increase the end-to-end data rate, this scheme is extended for two-way relay networks through a three-time slot framework. On the other hand, to substantially reduce the feedback channel overhead, limited feedback approaches based on parameter quantization are proposed. In particular, an optimal one-bit partial feedback approach is proposed for the generalized D-O-STBC scheme to maximize the array gain. To further enhance the end-to-end bit error rate performance of the cooperative relay system, a relay selection scheme based on D-EO-STBC is then proposed. Finally, to highlight the utility of the proposed D-EO-STBC scheme, an application to cognitive radio is studied

    Digital signal processing techniques for peak-to-average power ratio mitigation in MIMO–OFDM systems

    Get PDF
    The focus of this thesis is to mitigate the very large peak-to-average transmit power ratios (PAPRs) inherent to conventional orthogonal frequency division multiplexing (OFDM) systems, particularly in the context of transmission over multi-input multi-output (MIMO) wireless broadband channels. This problem is important as a large PAPR generally needs an expensive radio frequency (RF) power amplifier at the transmitter due to the requirement for linear operation over a wide amplitude range and such a cost would be compounded when multiple transmit antennas are used. Advanced signal processing techniques which can reduce PAPR whilst retain the integrity of digital transmission therefore have considerable potential for application in emergent MIMO–OFDM wireless systems and form the technical contributions of this study. [Continues.

    Distributed convolutional-based coding for cooperative systems

    Get PDF
    Whenever size, power, or other constraints preclude the use of multiple-input multiple-output (MIMO) systems, wireless systems cannot benefit from the well-known advantages of space-time coding (STC) methods. Also the complexity (multiple radio-frequency (RF) front ends at both the transmitter and the receiver), channel estimation, and spatial correlation in centralized MIMO systems degrade the performance. In situations like these, the alternative would be to resort to cooperative communications via multiple relay nodes. When these nodes work cooperatively, they form a virtual MIMO system. The destination receives multiple versions of the same message from the source and one or more relays, and combines these to create diversity. There are two main cooperative diversity techniques for transmission between a pair of nodes through a multiple relay nodes: decode-and-forward (DF) and amplify-and-forward (AF) modes. In the DF mode, the signal received from the source node is demodulated and decoded before retransmission. In the AF mode, the relay node simply amplifies and retransmits the signal received from the source node. No demodulation or decoding of the received signal is performed in this case. In encoded cooperative communication networks, the diversity of the system degrades significantly. This diversity degradation is attributed to the errors made at the relay nodes. Consequently, if better reliability is achieved at the relay nodes, the diversity may improve. or even may be preserved. as compared to the error-free case. In light of this, the objective of this thesis is to devise coding schemes suitable for relay channels that aim at improving the end-to-end performance of such systems. In this thesis, we present a coding scheme suitable for cooperative networks where the source and relays share their antennas to create a virtual transmit array to transmit towards their destination. We focus on the problem of coding for the relay channels. While the relays may use several forwarding strategies, including AF and DF, we focus on coded DF relaying. We derive upper bounded expressions for the bit error rate (BER) assuming M -ary phase shift keying ( M -PSK) transmission and show that the proposed scheme achieves large coding gains and frill diversity relative to the coded non-cooperative case for a wide range of signal-to-noise ratio (SNR) of interest. To improve the detection reliability further, we consider antenna/relay selection on the performance of cooperative networks in conjunction with the distributed coding scheme proposed. For simplicity, we assume that there is one relay that is equipped with n R antennas and only the best antenna is selected. For this scenario, assuming DF and AF relaying, we derive upper bounds on the BER for M -PSK transmission. Our analytical results show that the proposed scheme achieves full diversity for the entire range of BER of interest, unlike the case without antenna selection. In the last part of the thesis, we consider the same system considered in the ideal case but now with system imperfections. In particular, we consider the case when the channel state information is estimated at all nodes involved in the transmission process. We derive upper bounds on the performance with imperfect channel estimation. Our results show that there is a performance degradation due to the presence of channel estimation error. However, the observations made in the case of ideal channel state information still hold for the non-ideal case

    Cross-Layer design and analysis of cooperative wireless networks relying on efficient coding techniques

    Get PDF
    2011/2012This thesis work aims at analysing the performance of efficient cooperative techniques and of smart antenna aided solutions in the context of wireless networks. Particularly, original contributions include a performance analysis of distributed coding techniques for the physical layer of communication systems, the design of practical efficient coding schemes that approach the analytic limiting bound, the cross-layer design of cooperative medium access control systems that incorporate and benefit from advanced physical layer techniques, the study of the performance of such solutions under realistic network assumptions, and, finally the design of access protocols where nodes are equipped with smart antenna systems.XXV Ciclo198
    corecore