136,113 research outputs found

    Improved Distributed Algorithms for Exact Shortest Paths

    Full text link
    Computing shortest paths is one of the central problems in the theory of distributed computing. For the last few years, substantial progress has been made on the approximate single source shortest paths problem, culminating in an algorithm of Becker et al. [DISC'17] which deterministically computes (1+o(1))(1+o(1))-approximate shortest paths in O~(D+n)\tilde O(D+\sqrt n) time, where DD is the hop-diameter of the graph. Up to logarithmic factors, this time complexity is optimal, matching the lower bound of Elkin [STOC'04]. The question of exact shortest paths however saw no algorithmic progress for decades, until the recent breakthrough of Elkin [STOC'17], which established a sublinear-time algorithm for exact single source shortest paths on undirected graphs. Shortly after, Huang et al. [FOCS'17] provided improved algorithms for exact all pairs shortest paths problem on directed graphs. In this paper, we present a new single-source shortest path algorithm with complexity O~(n3/4D1/4)\tilde O(n^{3/4}D^{1/4}). For polylogarithmic DD, this improves on Elkin's O~(n5/6)\tilde{O}(n^{5/6}) bound and gets closer to the Ω~(n1/2)\tilde{\Omega}(n^{1/2}) lower bound of Elkin [STOC'04]. For larger values of DD, we present an improved variant of our algorithm which achieves complexity O~(n3/4+o(1)+min{n3/4D1/6,n6/7}+D)\tilde{O}\left( n^{3/4+o(1)}+ \min\{ n^{3/4}D^{1/6},n^{6/7}\}+D\right), and thus compares favorably with Elkin's bound of O~(n5/6+n2/3D1/3+D)\tilde{O}(n^{5/6} + n^{2/3}D^{1/3} + D ) in essentially the entire range of parameters. This algorithm provides also a qualitative improvement, because it works for the more challenging case of directed graphs (i.e., graphs where the two directions of an edge can have different weights), constituting the first sublinear-time algorithm for directed graphs. Our algorithm also extends to the case of exact κ\kappa-source shortest paths...Comment: 26 page

    An ETH-Tight Exact Algorithm for Euclidean TSP

    Get PDF
    We study exact algorithms for {\sc Euclidean TSP} in Rd\mathbb{R}^d. In the early 1990s algorithms with nO(n)n^{O(\sqrt{n})} running time were presented for the planar case, and some years later an algorithm with nO(n11/d)n^{O(n^{1-1/d})} running time was presented for any d2d\geq 2. Despite significant interest in subexponential exact algorithms over the past decade, there has been no progress on {\sc Euclidean TSP}, except for a lower bound stating that the problem admits no 2O(n11/dϵ)2^{O(n^{1-1/d-\epsilon})} algorithm unless ETH fails. Up to constant factors in the exponent, we settle the complexity of {\sc Euclidean TSP} by giving a 2O(n11/d)2^{O(n^{1-1/d})} algorithm and by showing that a 2o(n11/d)2^{o(n^{1-1/d})} algorithm does not exist unless ETH fails.Comment: To appear in FOCS 201

    Exact Inference Techniques for the Analysis of Bayesian Attack Graphs

    Get PDF
    Attack graphs are a powerful tool for security risk assessment by analysing network vulnerabilities and the paths attackers can use to compromise network resources. The uncertainty about the attacker's behaviour makes Bayesian networks suitable to model attack graphs to perform static and dynamic analysis. Previous approaches have focused on the formalization of attack graphs into a Bayesian model rather than proposing mechanisms for their analysis. In this paper we propose to use efficient algorithms to make exact inference in Bayesian attack graphs, enabling the static and dynamic network risk assessments. To support the validity of our approach we have performed an extensive experimental evaluation on synthetic Bayesian attack graphs with different topologies, showing the computational advantages in terms of time and memory use of the proposed techniques when compared to existing approaches.Comment: 14 pages, 15 figure

    Exact Distance Oracles for Planar Graphs

    Full text link
    We present new and improved data structures that answer exact node-to-node distance queries in planar graphs. Such data structures are also known as distance oracles. For any directed planar graph on n nodes with non-negative lengths we obtain the following: * Given a desired space allocation S[nlglgn,n2]S\in[n\lg\lg n,n^2], we show how to construct in O~(S)\tilde O(S) time a data structure of size O(S)O(S) that answers distance queries in O~(n/S)\tilde O(n/\sqrt S) time per query. As a consequence, we obtain an improvement over the fastest algorithm for k-many distances in planar graphs whenever k[n,n)k\in[\sqrt n,n). * We provide a linear-space exact distance oracle for planar graphs with query time O(n1/2+eps)O(n^{1/2+eps}) for any constant eps>0. This is the first such data structure with provable sublinear query time. * For edge lengths at least one, we provide an exact distance oracle of space O~(n)\tilde O(n) such that for any pair of nodes at distance D the query time is O~(minD,n)\tilde O(min {D,\sqrt n}). Comparable query performance had been observed experimentally but has never been explained theoretically. Our data structures are based on the following new tool: given a non-self-crossing cycle C with c=O(n)c = O(\sqrt n) nodes, we can preprocess G in O~(n)\tilde O(n) time to produce a data structure of size O(nlglgc)O(n \lg\lg c) that can answer the following queries in O~(c)\tilde O(c) time: for a query node u, output the distance from u to all the nodes of C. This data structure builds on and extends a related data structure of Klein (SODA'05), which reports distances to the boundary of a face, rather than a cycle. The best distance oracles for planar graphs until the current work are due to Cabello (SODA'06), Djidjev (WG'96), and Fakcharoenphol and Rao (FOCS'01). For σ(1,4/3)\sigma\in(1,4/3) and space S=nσS=n^\sigma, we essentially improve the query time from n2/Sn^2/S to n2/S\sqrt{n^2/S}.Comment: To appear in the proceedings of the 23rd ACM-SIAM Symposium on Discrete Algorithms, SODA 201

    On the probability of planarity of a random graph near the critical point

    Get PDF
    Consider the uniform random graph G(n,M)G(n,M) with nn vertices and MM edges. Erd\H{o}s and R\'enyi (1960) conjectured that the limit \lim_{n \to \infty} \Pr\{G(n,\textstyle{n\over 2}) is planar}} exists and is a constant strictly between 0 and 1. \L uczak, Pittel and Wierman (1994) proved this conjecture and Janson, \L uczak, Knuth and Pittel (1993) gave lower and upper bounds for this probability. In this paper we determine the exact probability of a random graph being planar near the critical point M=n/2M=n/2. For each λ\lambda, we find an exact analytic expression for p(λ)=limnPrG(n,n2(1+λn1/3))isplanar. p(\lambda) = \lim_{n \to \infty} \Pr{G(n,\textstyle{n\over 2}(1+\lambda n^{-1/3})) is planar}. In particular, we obtain p(0)0.99780p(0) \approx 0.99780. We extend these results to classes of graphs closed under taking minors. As an example, we show that the probability of G(n,n2)G(n,\textstyle{n\over 2}) being series-parallel converges to 0.98003. For the sake of completeness and exposition we reprove in a concise way several basic properties we need of a random graph near the critical point.Comment: 10 pages, 1 figur

    Exact Algorithms for Maximum Independent Set

    Get PDF
    We show that the maximum independent set problem (MIS) on an nn-vertex graph can be solved in 1.1996nnO(1)1.1996^nn^{O(1)} time and polynomial space, which even is faster than Robson's 1.2109nnO(1)1.2109^{n}n^{O(1)}-time exponential-space algorithm published in 1986. We also obtain improved algorithms for MIS in graphs with maximum degree 6 and 7, which run in time of 1.1893nnO(1)1.1893^nn^{O(1)} and 1.1970nnO(1)1.1970^nn^{O(1)}, respectively. Our algorithms are obtained by using fast algorithms for MIS in low-degree graphs in a hierarchical way and making a careful analyses on the structure of bounded-degree graphs

    Quantum algorithms for subset finding

    Full text link
    Recently, Ambainis gave an O(N^(2/3))-query quantum walk algorithm for element distinctness, and more generally, an O(N^(L/(L+1)))-query algorithm for finding L equal numbers. We point out that this algorithm actually solves a much more general problem, the problem of finding a subset of size L that satisfies any given property. We review the algorithm and give a considerably simplified analysis of its query complexity. We present several applications, including two algorithms for the problem of finding an L-clique in an N-vertex graph. One of these algorithms uses O(N^(2L/(L+1))) edge queries, and the other uses \tilde{O}(N^((5L-2)/(2L+4))), which is an improvement for L <= 5. The latter algorithm generalizes a recent result of Magniez, Santha, and Szegedy, who considered the case L=3 (finding a triangle). We also pose two open problems regarding continuous time quantum walk and lower bounds.Comment: 7 pages; note added on related results in quant-ph/031013

    Exact bounds for distributed graph colouring

    Full text link
    We prove exact bounds on the time complexity of distributed graph colouring. If we are given a directed path that is properly coloured with nn colours, by prior work it is known that we can find a proper 3-colouring in 12log(n)±O(1)\frac{1}{2} \log^*(n) \pm O(1) communication rounds. We close the gap between upper and lower bounds: we show that for infinitely many nn the time complexity is precisely 12logn\frac{1}{2} \log^* n communication rounds.Comment: 16 pages, 3 figure
    corecore