1,379 research outputs found

    Evolving strategies for single-celled organisms in multi-nutrient environments

    Get PDF
    When micro-organisms are in environments with multiple nutrients, they often preferentially utilise one first. A second is only utilised once the first is exhausted. Such a two-phase growth pattern is known as diauxic growth. Experimentally, this manifests itself through two distinct exponential growth phases separated by a lag phase of arrested growth. The dura- tion of the lag phase can be quite substantial. From an evolu- tionary point of view the existence of a lag phase is somewhat puzzling because it implies a substantial loss of growth op- portunity. Mutants with shorter lag phases would be prone to outcompete those with longer phases. Yet in nature, diauxic growth with lag phases appears to be a robust phenomenon. We introduce a model of the evolution of diauxic growth that captures the basic interactions regulating it in bacteria. We observe its evolution without a lag phase. We conclude that the lag phase is an adaptation that is only beneficial when fit- ness is averaged over a large number of environments

    Networking strategies in streptomyces coelicolor

    Get PDF
    We are interested the soil dwelling bacteria Streptomyces coelicolor because its cells grow end to end in a line. New branches have the potential to extend from any point along this line and the result is a network of branches and connections. This is a novel form of colonisation in the bacterial world and it is advantageous for spreading through an environment resourcefully. Networking protocols for communication technologies have similar pressures to be resourceful in terms of time, computing power, and energy. In this preliminary investigation we design a computer model of the biological system to understand its limitations and strategies for survival. The decentralised capacity for organisation of both the bacterial system and the model reflects well on the now-popular conventions for path finding and ad hoc network building in human technologies. The project will ultimately become a comparison of strategies between nature and the man-made

    Evolution of Cyanobacteria Through Geological Time

    Get PDF

    Algae–bacteria interactions: Evolution, ecology and emerging applications

    Get PDF
    AbstractAlgae and bacteria have coexisted ever since the early stages of evolution. This coevolution has revolutionized life on earth in many aspects. Algae and bacteria together influence ecosystems as varied as deep seas to lichens and represent all conceivable modes of interactions — from mutualism to parasitism. Several studies have shown that algae and bacteria synergistically affect each other's physiology and metabolism, a classic case being algae–roseobacter interaction. These interactions are ubiquitous and define the primary productivity in most ecosystems. In recent years, algae have received much attention for industrial exploitation but their interaction with bacteria is often considered a contamination during commercialization. A few recent studies have shown that bacteria not only enhance algal growth but also help in flocculation, both essential processes in algal biotechnology. Hence, there is a need to understand these interactions from an evolutionary and ecological standpoint, and integrate this understanding for industrial use. Here we reflect on the diversity of such relationships and their associated mechanisms, as well as the habitats that they mutually influence. This review also outlines the role of these interactions in key evolutionary events such as endosymbiosis, besides their ecological role in biogeochemical cycles. Finally, we focus on extending such studies on algal–bacterial interactions to various environmental and bio-technological applications

    Bryophyte Ecology

    Get PDF
    Bryophyte Ecology is an ebook comprised of 5 volumes written by Janice Glime, Professor Emerita of Biological Sciences at Michigan Technological University. Chapter coauthors include Irene Bisang, S. Robbert Gradstein, J. Lissner, W. J. Boelema, and D. H. Wagner. To download smaller sections of Bryophyte Ecology, visit: https://digitalcommons.mtu.edu/bryophyte-ecology/https://digitalcommons.mtu.edu/oabooks/1003/thumbnail.jp

    Oceanus.

    Get PDF
    v. 35, no. 3 (1992

    Oceanus.

    Get PDF
    v. 39, no. 1 (1996

    Microbial Effects on Repository Performance

    Get PDF
    This report presents a critical review of the international literature on microbial effects in and around a deep geological repository for higher activity wastes. It is aimed at those who are familiar with the nuclear industry and radioactive waste disposal, but who are not experts in microbiology; they may have a limited knowledge of how microbiology may be integrated into and impact upon radioactive waste disposal safety cases and associated performance assessments (PA)

    Nitrogen utilization in heterotrophic Chlamydomonas reinhardtii

    Get PDF
    2017 Spring.Includes bibliographical references.The aim of this dissertation research is to bring better understanding to the process of nitrogen adaptation in heterotrophic Chlamydomonas reinhardtii. Microalgae are a diverse group of aquatic photosynthetic organisms that account for almost 50% of the photosynthetic productivity on Earth. There is immense interest in using the unique ability of microalgae to convert sunlight to triacylglycerides (TAGs) for industrial purposes. However, to date there has been little success in implementing these systems at scale and price parity with non-biological methods. Microalgae can modify their metabolism to adapt to the surrounding environment. Under certain circumstances, including nutrient stress, microalgae divert carbon flow away from biomass production and into TAG accumulation. The most common nutrient stress used to trigger TAG accumulation is nitrogen stress, most often induced by transferring a cell from a nitrogen replete medium to a deficient one. The goals of this research were to understand this process, develop methods to manipulate the stress response, and ultimately, to find a way to decouple lipid production from nutrient depletion entirely. Chapter 1 introduces the concepts and research referenced throughout the dissertation including: a background of the C. reinhardtii species, the cultivation techniques that have been applied to cultivation, the physiology behind nitrogen stress, the mechanism that algae use to incorporate nitrogen into the cell, and finally an introduction to the global nitrogen regulator, PII. Chapters 2 through 4 present research into the nitrogen stress pathway and its modification. Chapter 2 discusses a simple method of cultivation used to bring about new insights into the nitrogen stress response, as well as a proposed technique for increasing cellular lipid production. Through differential nitrogen feeding, significantly different effects on cell growth were observed, demonstrating that the response to nitrogen availability is a continuous effect as opposed to an all or nothing "stress response". Chapter 3 describes experiments in which C. reinhardtii was genetically modified to increase understanding of the nitrogen stress response. A nitrogen regulatory protein, PII, was downregulated via amiRNA. Cultures of a mutant strain with lower levels of PII exhibited slow adaptation to fresh nutrient-replete medium but achieved a higher final cell number, final mass concentration, and total neutral lipid content. Similar results were obtained in cultures shifted to nitrogen-free medium. Chapter 4 employs proteomics to identify differences in the specific protein expression pattern between a functional PII strain and a knock-down mutant. Chapter 5 demonstrates a unique approach to producing an engineered nutrient-limited environment in a continuous stirred tank bioreactor. Chapters 7 and 8 summarize the research findings and offer possible direction for future research. Through this research work, new information was obtained on the effects of PII on the cellular response to nitrogen limitation. By increasing our understanding of this basic mechanism, we have proposed several processing conditions that may be implemented to increase microalgal productivity. Furthermore, the homology between microalgae and terrestrial plants suggests the possibility that the results discussed within could give genetic engineers new targets for creating crops with decreased nitrogen demands and increased nitrogen-stress tolerance traits
    corecore