83 research outputs found

    Intelligent MANET optimisation system

    Get PDF
    This thesis was submitted for the degree of Doctor of Philosophy and awarded by Brunel University.In the literature, various Mobile Ad hoc NETwork (MANET) routing protocols proposed. Each performs the best under specific context conditions, for example under high mobility or less volatile topologies. In existing MANET, the degradation in the routing protocol performance is always associated with changes in the network context. To date, no MANET routing protocol is able to produce optimal performance under all possible conditions. The core aim of this thesis is to solve the routing problem in mobile Ad hoc networks by introducing an optimum system that is in charge of the selection of the running routing protocol at all times, the system proposed in this thesis aims to address the degradation mentioned above. This optimisation system is a novel approach that can cope with the network performance’s degradation problem by switching to other routing protocol. The optimisation system proposed for MANET in this thesis adaptively selects the best routing protocol using an Artificial Intelligence mechanism according to the network context. In this thesis, MANET modelling helps in understanding the network performance through different contexts, as well as the models’ support to the optimisation system. Therefore, one of the main contributions of this thesis is the utilisation and comparison of various modelling techniques to create representative MANET performance models. Moreover, the proposed system uses an optimisation method to select the optimal communication routing protocol for the network context. Therefore, to build the proposed system, different optimisation techniques were utilised and compared to identify the best optimisation technique for the MANET intelligent system, which is also an important contribution of this thesis. The parameters selected to describe the network context were the network size and average mobility. The proposed system then functions by varying the routing mechanism with the time to keep the network performance at the best level. The selected protocol has been shown to produce a combination of: higher throughput, lower delay, fewer retransmission attempts, less data drop, and lower load, and was thus chosen on this basis. Validation test results indicate that the identified protocol can achieve both a better network performance quality than other routing protocols and a minimum cost function of 4.4%. The Ad hoc On Demand Distance Vector (AODV) protocol comes in second with a cost minimisation function of 27.5%, and the Optimised Link State Routing (OLSR) algorithm comes in third with a cost minimisation function of 29.8%. Finally, The Dynamic Source Routing (DSR) algorithm comes in last with a cost minimisation function of 38.3%

    Genetic improvement of programs

    Get PDF
    Genetic programming can optimise software, including: evolving test benchmarks, generating hyper-heuristics by searching meta-heuristics, generating communication protocols, composing telephony systems and web services, generating improved hashing and C++ heap managers, redundant programming and even automatic bug fixing. Particularly in embedded real-time or mobile systems, there may be many ways to trade off expenses (such as time, memory, energy, power consumption) vs. Functionality. Human programmers cannot try them all. Also the best multi-objective Pareto trade off may change with time, underlying hardware and network connection or user behaviour. It may be GP can automatically suggest different trade offs for each new market. Recent results include substantial speed up by evolving a new version of a program customised for a special case

    Data-driven modelling of biological multi-scale processes

    Full text link
    Biological processes involve a variety of spatial and temporal scales. A holistic understanding of many biological processes therefore requires multi-scale models which capture the relevant properties on all these scales. In this manuscript we review mathematical modelling approaches used to describe the individual spatial scales and how they are integrated into holistic models. We discuss the relation between spatial and temporal scales and the implication of that on multi-scale modelling. Based upon this overview over state-of-the-art modelling approaches, we formulate key challenges in mathematical and computational modelling of biological multi-scale and multi-physics processes. In particular, we considered the availability of analysis tools for multi-scale models and model-based multi-scale data integration. We provide a compact review of methods for model-based data integration and model-based hypothesis testing. Furthermore, novel approaches and recent trends are discussed, including computation time reduction using reduced order and surrogate models, which contribute to the solution of inference problems. We conclude the manuscript by providing a few ideas for the development of tailored multi-scale inference methods.Comment: This manuscript will appear in the Journal of Coupled Systems and Multiscale Dynamics (American Scientific Publishers

    Novel Memetic Computing Structures for Continuous Optimisation

    Get PDF
    This thesis studies a class of optimisation algorithms, namely Memetic Computing Structures, and proposes a novel set of promising algorithms that move the first step towards an implementation for the automatic generation of optimisation algorithms for continuous domains. This thesis after a thorough review of local search algorithms and popular meta-heuristics, focuses on Memetic Computing in terms of algorithm structures and design philosophy. In particular, most of the design carried out during my doctoral studies is inspired by the lex parsimoniae, aka Ockham’s Razor. It has been shown how simple algorithms, when well implemented can outperform complex implementations. In order to achieve this aim, the design is always carried out by attempting to identify the role of each algorithmic component/operator. In this thesis, on the basis of this logic, a set of variants of a recently proposed algorithms are presented. Subsequently a novel memetic structure, namely Parallel Memetic Structure is proposed and tested against modern algorithms representing the state of the art in optimisation. Furthermore, an initial prototype of an automatic design platform is also included. This prototype performs an analysis on separability of the optimisation problem and, on the basis of the analysis results, designs some parts of the parallel structure. Promising results are included. Finally, an investigation of the correlation among the variables and problem dimensionality has been performed. An extremely interesting finding of this thesis work is that the degree of correlation among the variables decreases when the dimensionality increases. As a direct consequence of this fact, large scale problems are to some extent easier to handle than problems in low dimensionality since, due to the lack of correlation among the variables, they can effectively be tackled by an algorithm that performs moves along the axes
    • …
    corecore