11 research outputs found

    Evolutionary acquisition of complex traits in artificial epigenetic networks

    Get PDF
    How complex traits arise within organisms over evolutionary time is an important question that has relevance both to the understanding of biological systems and to the design of bio-inspired computing systems. This paper investigates the process of acquiring complex traits within epiNet, a recurrent connectionist architecture capable of adapting its topology during execution. Inspired by the biological processes of gene regulation and epigenetics, epiNet captures biological organisms’ ability to alter their regulatory topologies according to environmental stimulus. By applying epiNet to a series of computational tasks, each requiring a range of complex behaviours to solve, and capturing the evolutionary process in detail, we can show not only how the physical structure of epiNet changed when acquiring complex traits, but also how these changes in physical structure affected its dynamic behaviour. This is facilitated by using a lightweight optimisation method which makes minor iterative changes to the network structure so that when complex traits emerge for the first time, a direct lineage can be observed detailing exactly how they evolved. From this we can build an understanding of how complex traits evolve and which regulatory environments best allow for the emergence of these complex traits, pointing us towards computational models that allow more swift and robust acquisition of complex traits when optimised in an evolutionary computing setting

    Using MapReduce Streaming for Distributed Life Simulation on the Cloud

    Get PDF
    Distributed software simulations are indispensable in the study of large-scale life models but often require the use of technically complex lower-level distributed computing frameworks, such as MPI. We propose to overcome the complexity challenge by applying the emerging MapReduce (MR) model to distributed life simulations and by running such simulations on the cloud. Technically, we design optimized MR streaming algorithms for discrete and continuous versions of Conway’s life according to a general MR streaming pattern. We chose life because it is simple enough as a testbed for MR’s applicability to a-life simulations and general enough to make our results applicable to various lattice-based a-life models. We implement and empirically evaluate our algorithms’ performance on Amazon’s Elastic MR cloud. Our experiments demonstrate that a single MR optimization technique called strip partitioning can reduce the execution time of continuous life simulations by 64%. To the best of our knowledge, we are the first to propose and evaluate MR streaming algorithms for lattice-based simulations. Our algorithms can serve as prototypes in the development of novel MR simulation algorithms for large-scale lattice-based a-life models.https://digitalcommons.chapman.edu/scs_books/1014/thumbnail.jp

    Design for an Increasingly Protean Machine

    Get PDF
    Data-driven, rather than hypothesis-driven, approaches to robot design are becoming increasingly widespread, but they remain narrowly focused on tuning the parameters of control software (neural network synaptic weights) inside an overwhelmingly static and presupposed body. Meanwhile, an efflorescence of new actuators and metamaterials continue to broaden the ways in which machines are free to move and morph, but they have yet to be adopted by useful robots because the design and control of metamorphosing body plans is extremely non-intuitive. This thesis unites these converging yet previously segregated technologies by automating the design of robots with physically malleable hardware, which we will refer to as protean machines, named after Proteus of Greek mythology. This thesis begins by proposing an ontology of embodied agents, their physical features, and their potential ability to purposefully change each one in space and time. A series of experiments are then documented in which increasingly more of these features (structure, shape, and material properties) were allowed to vary across increasingly more timescales (evolution, development, and physiology), and collectively optimized to facilitate adaptive behavior in a simulated physical environment. The utility of increasingly protean machines is demonstrated by a concomitant increase in both the performance and robustness of the final, optimized system. This holds true even if its ability to change is temporarily removed by fabricating the system in reality, or by “canalization”: the tendency for plasticity to be supplanted by good static traits (an inductive bias) for the current environment. Further, if physical flexibility is retained rather than canalized, it is shown how protean machines can, under certain conditions, achieve a form of hyper-robustness: the ability to self-edit their own anatomy to “undo” large deviations from the environments in which their control policy was originally optimized. Some of the designs that evolved in simulation were manufactured in reality using hundreds of highly deformable silicone building blocks, yielding shapeshifting robots. Others were built entirely out of biological tissues, derived from pluripotent Xenopus laevis stem cells, yielding computer-designed organisms (dubbed “xenobots”). Overall, the results shed unique light on questions about the evolution of development, simulation-to-reality transfer of physical artifacts, and the capacity for bioengineering new organisms with useful functions

    SpĂ©ciation guidĂ©e par l'environnement‎ : interactions sur des pĂ©riodes Ă©volutionnaires de communautĂ©s de plantes artificielles

    Get PDF
    Depuis des dĂ©cades, les chercheurs en Vie Artificielle on crĂ©Ă© une plĂ©thore de crĂ©atures en utilisant de multiples schĂ©mas d’encodage, capacitĂ©s motrices et aptitudes cognitives. Un motif rĂ©current, cependant, est que la focalisation est centrĂ©e sur les individus Ă  Ă©voluer, ne laissant que peu de place aux variations environnementales. Dans ce travail, nous argumentons que des contraintes abiotiques plus complexes pourraient diriger un processus Ă©volutionnaire vers des rĂ©gions de l’espace gĂ©nĂ©tique plus robustes and diverses. Nous avons conçu un modĂšle morphologique complexe, basĂ© sur les graphes orientĂ©s de K. Sims, qui repose sur le moteur physique Bullet pour la prĂ©cision et utilise des contraintes Ă  6 DegrĂ©s de LibertĂ© pour connecter les paires d’organes. Nous avons ainsi Ă©voluĂ© un panel de plantes Ă  l’aspect naturel qui devaient survivre malgrĂ© des niveaux de ressources variables induits par une source de lumiĂšre mobile et des motifs de pluies saisonniĂšres. En plus de cette expĂ©rience, nous avons aussi obtenu une meilleure croissance verticale en ajoutant une contrainte biotique artificielle sous la forme de brins d’herbe statiques. La complexitĂ© de ce modĂšle, cependant, ne permettait pas la mise a l’échelle d’une Ă©volution de populations et a donc Ă©tĂ© rĂ©duit dans l’expĂ©rience suivante, notamment en supprimant le moteur physique. Cela nous a amenĂ© Ă  l’exploration de la co-Ă©volution de populations composĂ©es d’une unique espĂšce et ayant la capacitĂ© de se reproduire de maniĂšre autonome grĂące Ă  notre Bail-Out Crossover (Croisement avec DĂ©sistement). Bien que les populations rĂ©sultantes n’ont pas dĂ©montrĂ© un grand intĂ©rĂȘt pour cette aptitude, elles ont nĂ©anmoins fourni d’importantes informations sur les mĂ©canismes d’auto-reproduction. Ceux-ci ont Ă©tĂ© mis en action dans un second modĂšle inspirĂ© des travaux de Bornhofen. GrĂące Ă  sa lĂ©gĂšretĂ©, cela nous a permis de traiter non seulement de plus grandes populations (de l’ordre de milliers d’individus) mais aussi de plus longues pĂ©riodes Ă©volutionnaires (100 annĂ©es, approximativement 5000 gĂ©nĂ©rations). Notre premiĂšre expĂ©rience avec ce modĂšle s’est concentrĂ©e sur la possibilitĂ© de reproduire des cas d’école de spĂ©ciation (allopatrique, parapatrique, pĂ©ripatrique) sur cette plate-forme. GrĂące Ă  APOGet, une nouvelle procĂ©dure de regroupement pour l’extraction en parallĂšle d’espĂšces Ă  partir d’un arbre gĂ©nĂ©alogique, nous avons pu affirmer que le systĂšme Ă©tait effectivement capable de spĂ©ciation spontanĂ©e. Cela nous a conduit Ă  une derniĂšre expĂ©rience dans laquelle l’environnement Ă©tait contrĂŽlĂ© par de la Programmation GĂ©nĂ©tique CartĂ©sienne (CGP), permettant ainsi une Ă©volution automatique d’une population et des contraintes abiotiques auxquelles elle Ă©tait confrontĂ©e. Par une variation du traditionnel algorithme 1 + λ nous avons obtenu 10 populations finales qui ont survĂ©cu Ă  de brutales et imprĂ©visibles variations environnementales. En les comparant Ă  un groupe contrĂŽle c pour lequel les contraintes ont Ă©tĂ© maintenues faibles et constantes, le groupe Ă©voluĂ© e a montrĂ© des performances mitigĂ©es: dans les deux types de tests, une moitiĂ© de e surpassait c qui, Ă  son tour, surpassait la moitiĂ© restante de e. Nous avons aussi trouvĂ© une trĂšs forte corrĂ©lation entre les chutes catastrophiques de population et la performance des Ă©volutions correspondantes. Il en rĂ©sulte que l’évolution de population dans des environnements hostiles et dynamiques n’est pas une panacĂ©e bien que ces expĂ©riences en dĂ©montrent le potentiel et souligne le besoin d’études ultĂ©rieures plus approfondies.Artificial Life researchers have, for decades, created a plethora of creatures using numerous encoding schemes, motile capabilities and cognitive capacities. One recurring pattern, however, is that focus is solely put on the evolved individuals, with very limited environmental variations. In this work, we argue that more complex abiotic constraints could drive an evolutionary process towards more robust and diverse regions of the genetic space. We started with a complex morphogenetic model, based on K. Sims’ directed graphs, which relied on the Bullet physics engine for accuracy and used 6Degrees of Freedom constraints to connect pairs of organs. We evolved a panel of natural-looking plants which had to cope with varying resource levels thanks to a mobile light source and seasonal rain patterns. In addition to this experiment, we also obtained improved vertical growth by adding an artificialbiotic constraint in the form of static grass blades. However, the computational cost of this model precluded scaling to a population-level evolution and was reduced in the successive experiment, notably by removing the physical engine. This led to the exploration of co-evolution on single-species populations which, thanks to our Bail-Out Crossover (BOC) algorithm, were able to self-reproduce. The resulting populations provided valuable insight into the mechanisms of self-sustainability. These were put to action in an even more straightforward morphogenetic model inspired by the work of Bornhofen. Due to its light weightness, this allowed for both larger populations (up to thousands of individuals) and longer evolutionary periods (100 years, roughly 5K generations). Our first experiment on this model tested whether text-book cases of speciation could be reproduced in our framework. Such positive results were observed thanks to the species monitoring capacities of APOGeT, a novel clustering procedure we designed for online extraction of species from a genealogic tree. This drove us to a final experiment in which the environment was controlled through Cartesian Genetic Programming thus allowing the automated evolution of both the population and abiotic constraints it is subjected to. Through a variation of the traditional1 + λ algorithm, we obtained 10 populations (evolved group e) which had endured in harsh and unpredictable environments. These were confronted to a control group c, in which the constraints were kept mild and constant, on two types of colonization evaluation. Results showed that the evolved group was heterogeneous with half of e consistently outperforming members of c and the other half exhibiting worse performances than the baseline. We also found a very strong positive correlation between catastrophic drops in population level during evolution with the robustness of their final representatives. From this work, two conclusions can be drawn. First, though the need to fight on both the abiotic and biotic fronts can lead to worse performances, more robust individuals can be found in reasonable time-frames. Second, the automated co-evolution of populations and their environments is essential in exploring counter-intuitive, yet fundamental, dynamics both in biological and artificial life

    SpĂ©ciation guidĂ©e par l'environnement‎ : interactions sur des pĂ©riodes Ă©volutionnaires de communautĂ©s de plantes artificielles

    Get PDF
    Depuis des dĂ©cades, les chercheurs en Vie Artificielle on crĂ©Ă© une plĂ©thore de crĂ©atures en utilisant de multiples schĂ©mas d’encodage, capacitĂ©s motrices et aptitudes cognitives. Un motif rĂ©current, cependant, est que la focalisation est centrĂ©e sur les individus Ă  Ă©voluer, ne laissant que peu de place aux variations environnementales. Dans ce travail, nous argumentons que des contraintes abiotiques plus complexes pourraient diriger un processus Ă©volutionnaire vers des rĂ©gions de l’espace gĂ©nĂ©tique plus robustes and diverses. Nous avons conçu un modĂšle morphologique complexe, basĂ© sur les graphes orientĂ©s de K. Sims, qui repose sur le moteur physique Bullet pour la prĂ©cision et utilise des contraintes Ă  6 DegrĂ©s de LibertĂ© pour connecter les paires d’organes. Nous avons ainsi Ă©voluĂ© un panel de plantes Ă  l’aspect naturel qui devaient survivre malgrĂ© des niveaux de ressources variables induits par une source de lumiĂšre mobile et des motifs de pluies saisonniĂšres. En plus de cette expĂ©rience, nous avons aussi obtenu une meilleure croissance verticale en ajoutant une contrainte biotique artificielle sous la forme de brins d’herbe statiques. La complexitĂ© de ce modĂšle, cependant, ne permettait pas la mise a l’échelle d’une Ă©volution de populations et a donc Ă©tĂ© rĂ©duit dans l’expĂ©rience suivante, notamment en supprimant le moteur physique. Cela nous a amenĂ© Ă  l’exploration de la co-Ă©volution de populations composĂ©es d’une unique espĂšce et ayant la capacitĂ© de se reproduire de maniĂšre autonome grĂące Ă  notre Bail-Out Crossover (Croisement avec DĂ©sistement). Bien que les populations rĂ©sultantes n’ont pas dĂ©montrĂ© un grand intĂ©rĂȘt pour cette aptitude, elles ont nĂ©anmoins fourni d’importantes informations sur les mĂ©canismes d’auto-reproduction. Ceux-ci ont Ă©tĂ© mis en action dans un second modĂšle inspirĂ© des travaux de Bornhofen. GrĂące Ă  sa lĂ©gĂšretĂ©, cela nous a permis de traiter non seulement de plus grandes populations (de l’ordre de milliers d’individus) mais aussi de plus longues pĂ©riodes Ă©volutionnaires (100 annĂ©es, approximativement 5000 gĂ©nĂ©rations). Notre premiĂšre expĂ©rience avec ce modĂšle s’est concentrĂ©e sur la possibilitĂ© de reproduire des cas d’école de spĂ©ciation (allopatrique, parapatrique, pĂ©ripatrique) sur cette plate-forme. GrĂące Ă  APOGet, une nouvelle procĂ©dure de regroupement pour l’extraction en parallĂšle d’espĂšces Ă  partir d’un arbre gĂ©nĂ©alogique, nous avons pu affirmer que le systĂšme Ă©tait effectivement capable de spĂ©ciation spontanĂ©e. Cela nous a conduit Ă  une derniĂšre expĂ©rience dans laquelle l’environnement Ă©tait contrĂŽlĂ© par de la Programmation GĂ©nĂ©tique CartĂ©sienne (CGP), permettant ainsi une Ă©volution automatique d’une population et des contraintes abiotiques auxquelles elle Ă©tait confrontĂ©e. Par une variation du traditionnel algorithme 1 + λ nous avons obtenu 10 populations finales qui ont survĂ©cu Ă  de brutales et imprĂ©visibles variations environnementales. En les comparant Ă  un groupe contrĂŽle c pour lequel les contraintes ont Ă©tĂ© maintenues faibles et constantes, le groupe Ă©voluĂ© e a montrĂ© des performances mitigĂ©es: dans les deux types de tests, une moitiĂ© de e surpassait c qui, Ă  son tour, surpassait la moitiĂ© restante de e. Nous avons aussi trouvĂ© une trĂšs forte corrĂ©lation entre les chutes catastrophiques de population et la performance des Ă©volutions correspondantes. Il en rĂ©sulte que l’évolution de population dans des environnements hostiles et dynamiques n’est pas une panacĂ©e bien que ces expĂ©riences en dĂ©montrent le potentiel et souligne le besoin d’études ultĂ©rieures plus approfondies.Artificial Life researchers have, for decades, created a plethora of creatures using numerous encoding schemes, motile capabilities and cognitive capacities. One recurring pattern, however, is that focus is solely put on the evolved individuals, with very limited environmental variations. In this work, we argue that more complex abiotic constraints could drive an evolutionary process towards more robust and diverse regions of the genetic space. We started with a complex morphogenetic model, based on K. Sims’ directed graphs, which relied on the Bullet physics engine for accuracy and used 6Degrees of Freedom constraints to connect pairs of organs. We evolved a panel of natural-looking plants which had to cope with varying resource levels thanks to a mobile light source and seasonal rain patterns. In addition to this experiment, we also obtained improved vertical growth by adding an artificialbiotic constraint in the form of static grass blades. However, the computational cost of this model precluded scaling to a population-level evolution and was reduced in the successive experiment, notably by removing the physical engine. This led to the exploration of co-evolution on single-species populations which, thanks to our Bail-Out Crossover (BOC) algorithm, were able to self-reproduce. The resulting populations provided valuable insight into the mechanisms of self-sustainability. These were put to action in an even more straightforward morphogenetic model inspired by the work of Bornhofen. Due to its light weightness, this allowed for both larger populations (up to thousands of individuals) and longer evolutionary periods (100 years, roughly 5K generations). Our first experiment on this model tested whether text-book cases of speciation could be reproduced in our framework. Such positive results were observed thanks to the species monitoring capacities of APOGeT, a novel clustering procedure we designed for online extraction of species from a genealogic tree. This drove us to a final experiment in which the environment was controlled through Cartesian Genetic Programming thus allowing the automated evolution of both the population and abiotic constraints it is subjected to. Through a variation of the traditional1 + λ algorithm, we obtained 10 populations (evolved group e) which had endured in harsh and unpredictable environments. These were confronted to a control group c, in which the constraints were kept mild and constant, on two types of colonization evaluation. Results showed that the evolved group was heterogeneous with half of e consistently outperforming members of c and the other half exhibiting worse performances than the baseline. We also found a very strong positive correlation between catastrophic drops in population level during evolution with the robustness of their final representatives. From this work, two conclusions can be drawn. First, though the need to fight on both the abiotic and biotic fronts can lead to worse performances, more robust individuals can be found in reasonable time-frames. Second, the automated co-evolution of populations and their environments is essential in exploring counter-intuitive, yet fundamental, dynamics both in biological and artificial life

    Task Allocation in Foraging Robot Swarms:The Role of Information Sharing

    Get PDF
    Autonomous task allocation is a desirable feature of robot swarms that collect and deliver items in scenarios where congestion, caused by accumulated items or robots, can temporarily interfere with swarm behaviour. In such settings, self-regulation of workforce can prevent unnecessary energy consumption. We explore two types of self-regulation: non-social, where robots become idle upon experiencing congestion, and social, where robots broadcast information about congestion to their team mates in order to socially inhibit foraging. We show that while both types of self-regulation can lead to improved energy efficiency and increase the amount of resource collected, the speed with which information about congestion flows through a swarm affects the scalability of these algorithms
    corecore