3,400 research outputs found

    Semantically-Enhanced Online Configuration of Feedback Control Schemes

    Get PDF
    Recent progress toward the realization of the ``Internet of Things'' has improved the ability of physical and soft/cyber entities to operate effectively within large-scale, heterogeneous systems. It is important that such capacity be accompanied by feedback control capabilities sufficient to ensure that the overall systems behave according to their specifications and meet their functional objectives. To achieve this, such systems require new architectures that facilitate the online deployment, composition, interoperability, and scalability of control system components. Most current control systems lack scalability and interoperability because their design is based on a fixed configuration of specific components, with knowledge of their individual characteristics only implicitly passed through the design. This paper addresses the need for flexibility when replacing components or installing new components, which might occur when an existing component is upgraded or when a new application requires a new component, without the need to readjust or redesign the overall system. A semantically enhanced feedback control architecture is introduced for a class of systems, aimed at accommodating new components into a closed-loop control framework by exploiting the semantic inference capabilities of an ontology-based knowledge model. This architecture supports continuous operation of the control system, a crucial property for large-scale systems for which interruptions have negative impact on key performance metrics that may include human comfort and welfare or economy costs. A case-study example from the smart buildings domain is used to illustrate the proposed architecture and semantic inference mechanisms

    A LOW-COST APPROACH TO DATA-DRIVEN FUZZY CONTROL OF SERVO SYSTEMS

    Get PDF
    Servo systems become more and more important in control systems applications in various fields as both separate control systems and actuators. Ensuring very good control system performance using few information on the servo system model (viewed as a controlled process) is a challenging task. Starting with authors’ results on data-driven model-free control, fuzzy control and the indirect model-free tuning of fuzzy controllers, this paper suggests a low-cost approach to the data-driven fuzzy control of servo systems. The data-driven fuzzy control approach consists of six steps: (i) open-loop data-driven system identification to produce the process model from input-output data expressed as the system step response, (ii) Proportional-Integral (PI) controller tuning using the Extended Symmetrical Optimum (ESO) method, (iii) PI controller parameters mapping onto parameters of Takagi-Sugeno PI-fuzzy controller in terms of the modal equivalence principle, (iv) closed-loop data-driven system identification, (v) PI controller tuning using the ESO method, (vi) PI controller parameters mapping onto parameters of Takagi-Sugeno PI-fuzzy controller. The steps (iv), (v) and (vi) are optional. The approach is applied to the position control of a nonlinear servo system. The experimental results obtained on laboratory equipment validate the approach

    A brief review of neural networks based learning and control and their applications for robots

    Get PDF
    As an imitation of the biological nervous systems, neural networks (NN), which are characterized with powerful learning ability, have been employed in a wide range of applications, such as control of complex nonlinear systems, optimization, system identification and patterns recognition etc. This article aims to bring a brief review of the state-of-art NN for the complex nonlinear systems. Recent progresses of NNs in both theoretical developments and practical applications are investigated and surveyed. Specifically, NN based robot learning and control applications were further reviewed, including NN based robot manipulator control, NN based human robot interaction and NN based behavior recognition and generation

    Proportional Derivative Control with Inverse Dead-Zone for Pendulum Systems

    Get PDF
    A proportional derivative controller with inverse dead-zone is proposed for the control of pendulum systems. The proposed method has the characteristic that the inverse dead-zone is cancelled with the pendulum dead-zone. Asymptotic stability of the proposed technique is guaranteed by the Lyapunov analysis. Simulations of two pendulum systems show the effectiveness of the proposed technique

    Output power levelling for DFIG wind turbine system using intelligent pitch angle control

    Get PDF
    Blade pitch angle control, as an indispensable part of wind turbine, plays a part in getting the desired power. In this regard, several pitch angle control methods have been proposed in order to limit aerodynamic power gained from the wind turbine system (WTS) in the high-windspeed regions. In this paper, intelligent control methods are applied to control the blade pitch angle of doubly-fed induction generator (DFIG) WTS. Conventional fuzzy logic and neuro-fuzzyparticle swarm optimization controllers are used to get the appropriate wind power, where fuzzy inference system is based on fuzzy c-means clustering algorithm. It reduces the extra repetitive rules in fuzzy structure which in turn would reduce the complexity in neuro-fuzzy network with maximizing efficiently. In comparing the controllers at any given wind speed, adaptive neuro-fuzzy inference systems controller involving both mechanical power and rotor speed revealed better performance to maintain the aerodynamic power and rotor speed at the rated value. The effectiveness of the proposed method is verified by simulation results for a 9 MW DFIG WTS

    Técnicas de modelado matemático paramétrico y no paramétrico: un caso práctico de identificación de una máquina eléctrica

    Get PDF
    El modelado matemático es una característica muy importante en relación con el análisis y control de sistemas dinámicos. Además, la identificación del sistema es un enfoque para construir expresiones matemáticas a partir de datos experimentales tomados de procesos. En este contexto, este trabajo describe varias técnicas de modelado e identificación que son herramientas poderosas para determinar el comportamiento de los sistemas dinámicos en el tiempo. En Este trabajo se enfatiza las principales ventajas y/o desventajas que tienen las diferentes formulaciones matemáticas de modelación e identificación. También se presenta una revisión exhaustiva de las principales técnicas de modelado e identificación desde una perspectiva paramétrica y no paramétrica. Se formularon los modelos paramétricos y no paramétricos por medio de sus ecuaciones para aplicarlos en un caso de estudio. Los datos experimentales se toman de una máquina eléctrica, un motor de DC de una plataforma didáctica en la cual se aplican un conjunto de entradas conocidas para medir la velocidad del motor y utilizar estos datos como parte del proceso de modelación e identificación. El artículo concluye con las soluciones proporcionadas por la comparación de técnicas de modelación e identificación donde soluciones sencillas como los sistemas de primer orden son precisos para modelar un motor DC de dinámica lineal sobre otras formulaciones matemáticas más complejasMathematical modeling is an important feature concerning the analysis and control of dynamic systems. Also, system identification is an approach for building mathematical expressions from experimental data taken from processes performance. In this context, the contemporaneous state of the art describes several modelling and identification techniques which are excellent alternatives to determine systems behavior through time. This paper presents a comprehensive review of the main techniques for modeling and identification from a parametric and no parametric perspective. Experimental data are taken from an electrical machine that is a DC motor from a didactic platform. The paper concludes with the analysis of results taken from different identification procedures

    Neural Networks for Modeling and Control of Particle Accelerators

    Full text link
    We describe some of the challenges of particle accelerator control, highlight recent advances in neural network techniques, discuss some promising avenues for incorporating neural networks into particle accelerator control systems, and describe a neural network-based control system that is being developed for resonance control of an RF electron gun at the Fermilab Accelerator Science and Technology (FAST) facility, including initial experimental results from a benchmark controller.Comment: 21 p

    Development of Self-Learning Type-2 Fuzzy Systems for System Identification and Control of Autonomous Systems

    Full text link
    Modelling and control of dynamic systems are faced by multiple technical challenges, mainly due to the nature of uncertain complex, nonlinear, and time-varying systems. Traditional modelling techniques require a complete understanding of system dynamics and obtaining comprehensive mathematical models is not always achievable due to limited knowledge of the systems as well as the presence of multiple uncertainties in the environment. As universal approximators, fuzzy logic systems (FLSs), neural networks (NNs) and neuro-fuzzy systems have proved to be successful computational tools for representing the behaviour of complex dynamical systems. Moreover, FLSs, NNs and learning-based techniques have been gaining popularity for controlling complex, ill-defined, nonlinear, and time-varying systems in the face of uncertainties. However, fuzzy rules derived by experts can be too ad-hoc, and the performance is less than optimum. In other words, generating fuzzy rules and membership functions in fuzzy systems is a potential challenge especially for systems with many variables. Moreover, under the umbrella of FLSs, although type-1 fuzzy logic control systems (T1-FLCs) have been applied to control various complex nonlinear systems, they have limited capability to handle uncertainties. Aiming to accommodate uncertainties, type-2 fuzzy logic control systems (T2-FLCs) were established. This thesis aims to address the shortcomings of existing fuzzy techniques by utilisation of type-2 FLCs with novel adaptive capabilities. The first contribution of this thesis is a novel online system identification technique by means of a recursive interval type-2 Takagi-Sugeno fuzzy C-means clustering technique (IT2-TS-FC) to accommodate the footprint-of-uncertainties (FoUs). This development is meant to specifically address the shortcomings of type-1 fuzzy systems in capturing the footprint-of-uncertainties such as mechanical wear, rotor damage, battery drain and sensor and actuator faults. Unlike previous type-2 TS fuzzy models, the proposed method constructs two fuzzifiers (upper and lower) and two regression coefficients in the consequent part to handle uncertainties. The weighted least square method is employed to compute the regression coefficients. The proposed method is validated using two benchmarks, namely, real flight test data of a quadcopter drone and Mackey-Glass time series data. The algorithm has the capability to model uncertainties (e.g., noisy dataset). The second contribution of this thesis is the development of a novel self-adaptive interval type-2 fuzzy controller named the SAF2C for controlling multi-input multi-output (MIMO) nonlinear systems. The adaptation law is derived using sliding mode control (SMC) theory to reduce the computation time so that the learning process can be expedited by 80% compared to separate single-input single-output (SISO) controllers. The system employs the `Enhanced Iterative Algorithm with Stop Condition' (EIASC) type-reduction method, which is more computationally efficient than the `Karnik-Mendel' type-reduction algorithm. The stability of the SAF2C is proven using the Lyapunov technique. To ensure the applicability of the proposed control scheme, SAF2C is implemented to control several dynamical systems, including a simulated MIMO hexacopter unmanned aerial vehicle (UAV) in the face of external disturbance and parameter variations. The ability of SAF2C to filter the measurement noise is demonstrated, where significant improvement is obtained using the proposed controller in the face of measurement noise. Also, the proposed closed-loop control system is applied to control other benchmark dynamic systems (e.g., a simulated autonomous underwater vehicle and inverted pendulum on a cart system) demonstrating high accuracy and robustness to variations in system parameters and external disturbance. Another contribution of this thesis is a novel stand-alone enhanced self-adaptive interval type-2 fuzzy controller named the ESAF2C algorithm, whose type-2 fuzzy parameters are tuned online using the SMC theory. This way, we expect to design a computationally efficient adaptive Type-2 fuzzy system, suitable for real-time applications by introducing the EIASC type-reducer. The proposed technique is applied on a quadcopter UAV (QUAV), where extensive simulations and real-time flight tests for a hovering QUAV under wind disturbances are also conducted to validate the efficacy of the ESAF2C. Specifically, the control performance is investigated in the face of external wind gust disturbances, generated using an industrial fan. Stability analysis of the ESAF2C control system is investigated using the Lyapunov theory. Yet another contribution of this thesis is the development of a type-2 evolving fuzzy control system (T2-EFCS) to facilitate self-learning (either from scratch or from a certain predefined rule). T2-EFCS has two phases, namely, the structure learning and the parameters learning. The structure of T2-EFCS does not require previous information about the fuzzy structure, and it can start the construction of its rules from scratch with only one rule. The rules are then added and pruned in an online fashion to achieve the desired set-point. The proposed technique is applied to control an unmanned ground vehicle (UGV) in the presence of multiple external disturbances demonstrating the robustness of the proposed control systems. The proposed approach turns out to be computationally efficient as the system employs fewer fuzzy parameters while maintaining superior control performance

    Robust Evolving Cloud-based Controller (ReCCo)

    Get PDF
    This paper presents an autonomous Robust Evolving Cloud-based Controller (RECCo). The control algorithm is a fuzzy type with non-parametric (cloud-based) antecedent part and adaptive PID-R consequent part. The procedure starts with zero clouds (fuzzy rules) and the structure evolves during performing the process control. The PID-R parameters of the first cloud are initialized with zeros and furthermore, they are adapted on-line with a stable adaptation mechanism based on Lyapunov approach. The RECCo controller does not require any mathematical model of the controlled process but just basic information such as input and output range and the estimated value of the dominant time constant. Due to the problem space normalization the design parameters are fixed. The proposed controller with the same initial design parameters was tested on two different simulation examples. The experimental results show the convergence of the adaptive parameters and the effectiveness of the proposed algorithm
    corecore