972 research outputs found

    Data mining in manufacturing: a review based on the kind of knowledge

    Get PDF
    In modern manufacturing environments, vast amounts of data are collected in database management systems and data warehouses from all involved areas, including product and process design, assembly, materials planning, quality control, scheduling, maintenance, fault detection etc. Data mining has emerged as an important tool for knowledge acquisition from the manufacturing databases. This paper reviews the literature dealing with knowledge discovery and data mining applications in the broad domain of manufacturing with a special emphasis on the type of functions to be performed on the data. The major data mining functions to be performed include characterization and description, association, classification, prediction, clustering and evolution analysis. The papers reviewed have therefore been categorized in these five categories. It has been shown that there is a rapid growth in the application of data mining in the context of manufacturing processes and enterprises in the last 3 years. This review reveals the progressive applications and existing gaps identified in the context of data mining in manufacturing. A novel text mining approach has also been used on the abstracts and keywords of 150 papers to identify the research gaps and find the linkages between knowledge area, knowledge type and the applied data mining tools and techniques

    Working Notes from the 1992 AAAI Spring Symposium on Practical Approaches to Scheduling and Planning

    Get PDF
    The symposium presented issues involved in the development of scheduling systems that can deal with resource and time limitations. To qualify, a system must be implemented and tested to some degree on non-trivial problems (ideally, on real-world problems). However, a system need not be fully deployed to qualify. Systems that schedule actions in terms of metric time constraints typically represent and reason about an external numeric clock or calendar and can be contrasted with those systems that represent time purely symbolically. The following topics are discussed: integrating planning and scheduling; integrating symbolic goals and numerical utilities; managing uncertainty; incremental rescheduling; managing limited computation time; anytime scheduling and planning algorithms, systems; dependency analysis and schedule reuse; management of schedule and plan execution; and incorporation of discrete event techniques

    Entwicklung und EinfĂŒhrung von Produktionssteuerungsverbesserungen fĂŒr die kundenorientierte Halbleiterfertigung

    Get PDF
    Production control in a semiconductor production facility is a very complex and timeconsuming task. Different demands regarding facility performance parameters are defined by customer and facility management. These requirements are usually opponents, and an efficient strategy is not simple to define. In semiconductor manufacturing, the available production control systems often use priorities to define the importance of each production lot. The production lots are ranked according to the defined priorities. This process is called dispatching. The priority allocation is carried out by special algorithms. In literature, a huge variety of different strategies and rules is available. For the semiconductor foundry business, there is a need for a very flexible and adaptable policy taking the facility state and the defined requirements into account. At our case the production processes are characterized by a low-volume high-mix product portfolio. This portfolio causes additional stability problems and performance lags. The unstable characteristic increases the influence of reasonable production control logic. This thesis offers a very flexible and adaptable production control policy. This policy is based on a detailed facility model with real-life production data. The data is extracted from a real high-mix low-volume semiconductor facility. The dispatching strategy combines several dispatching rules. Different requirements like line balance, throughput optimization and on-time delivery targets can be taken into account. An automated detailed facility model calculates a semi-optimal combination of the different dispatching rules under a defined objective function. The objective function includes different demands from the management and the customer. The optimization is realized by a genetic heuristic for a fast and efficient finding of a close-to-optimal solution. The strategy is evaluated with real-life production data. The analysis with the detailed facility model of this fab shows an average improvement of 5% to 8% for several facility performance parameters like cycle time per mask layer. Finally the approach is realized and applied at a typical high-mix low-volume semiconductor facility. The system realization bases on a JAVA implementation. This implementation includes common state-of-the-art technologies such as web services. The system replaces the older production control solution. Besides the dispatching algorithm, the production policy includes the possibility to skip several metrology operations under defined boundary conditions. In a real-life production process, not all metrology operations are necessary for each lot. The thesis evaluates the influence of the sampling mechanism to the production process. The solution is included into the system implementation as a framework to assign different sampling rules to different metrology operations. Evaluations show greater improvements at bottleneck situations. After the productive introduction and usage of both systems, the practical results are evaluated. The staff survey offers good acceptance and response to the system. Furthermore positive effects on the performance measures are visible. The implemented system became part of the daily tools of a real semiconductor facility.Produktionssteuerung im Bereich der kundenorientierten Halbleiterfertigung ist heutzutage eine sehr komplexe und zeitintensive Aufgabe. Verschiedene Anforderungen bezĂŒglich der Fabrikperformance werden seitens der Kunden als auch des Fabrikmanagements definiert. Diese Anforderungen stehen oftmals in Konkurrenz. Dadurch ist eine effiziente Strategie zur Kompromissfindung nicht einfach zu definieren. Heutige Halbleiterfabriken mit ihren verfĂŒgbaren Produktionssteuerungssystemen nutzen oft prioritĂ€tsbasierte Lösungen zur Definition der Wichtigkeit eines jeden Produktionsloses. Anhand dieser PrioritĂ€ten werden die Produktionslose sortiert und bearbeitet. In der Literatur existiert eine große Bandbreite verschiedener Algorithmen. Im Bereich der kundenorientierten Halbleiterfertigung wird eine sehr flexible und anpassbare Strategie benötigt, die auch den aktuellen Fabrikzustand als auch die wechselnden Kundenanforderungen berĂŒcksichtigt. Dies gilt insbesondere fĂŒr den hochvariablen geringvolumigen Produktionsfall. Diese Arbeit behandelt eine flexible Strategie fĂŒr den hochvariablen Produktionsfall einer solchen ProduktionsstĂ€tte. Der Algorithmus basiert auf einem detaillierten Fabriksimulationsmodell mit RĂŒckgriff auf Realdaten. Neben synthetischen Testdaten wurde der Algorithmus auch anhand einer realen Fertigungsumgebung geprĂŒft. Verschiedene Steuerungsregeln werden hierbei sinnvoll kombiniert und gewichtet. Wechselnde Anforderungen wie Linienbalance, Durchsatz oder Liefertermintreue können adressiert und optimiert werden. Mittels einer definierten Zielfunktion erlaubt die automatische Modellgenerierung eine Optimierung anhand des aktuellen Fabrikzustandes. Die Optimierung basiert auf einen genetischen Algorithmus fĂŒr eine flexible und effiziente Lösungssuche. Die Strategie wurde mit Realdaten aus der Fertigung einer typischen hochvariablen geringvolumigen Halbleiterfertigung geprĂŒft und analysiert. Die Analyse zeigt ein Verbesserungspotential von 5% bis 8% fĂŒr die bekannten Performancekriterien wie Cycletime im Vergleich zu gewöhnlichen statischen Steuerungspolitiken. Eine prototypische Implementierung realisiert diesen Ansatz zur Nutzung in der realen Fabrikumgebung. Die Implementierung basiert auf der JAVA-Programmiersprache. Aktuelle Implementierungsmethoden erlauben den flexiblen Einsatz in der Produktionsumgebung. Neben der Fabriksteuerung wurde die Möglichkeit der Reduktion von Messoperationszeit (auch bekannt unter Sampling) unter gegebenen Randbedingungen einer hochvariablen geringvolumigen Fertigung untersucht und geprĂŒft. Oftmals ist aufgrund stabiler Prozesse in der Fertigung die Messung aller Lose an einem bestimmten Produktionsschritt nicht notwendig. Diese Arbeit untersucht den Einfluss dieses gĂ€ngigen Verfahrens aus der Massenfertigung fĂŒr die spezielle geringvolumige Produktionsumgebung. Die Analysen zeigen insbesondere in Ausnahmesituationen wie AnlagenausfĂ€llen und KapazitĂ€tsengpĂ€sse einen positiven Effekt, wĂ€hrend der Einfluss unter normalen Produktionsbedingungen aufgrund der hohen ProduktvariabilitĂ€t als gering angesehen werden kann. Nach produktiver EinfĂŒhrung in einem typischen Vertreter dieser Halbleiterfabriken zeigten sich schnell positive Effekte auf die Fabrikperformance als auch eine breite Nutzerakzeptanz. Das implementierte System wurde Bestandteil der tĂ€glichen genutzten Werkzeuglandschaft an diesem Standort

    Reusable modelling and simulation of flexible manufacturing for next generation semiconductor manufacturing facilities

    Get PDF
    Automated material handling systems (AMHS) in 300 mm semiconductor manufacturing facilities may need to evolve faster than expected considering the high performance demands on these facilities. Reusable simulation models are needed to cope with the demands of this dynamic environment and to deliver answers to the industry much faster. One vision for intrabay AMHS is to link a small group of intrabay AMHS systems, within a full manufacturing facility, together using what is called a Merge/Diverge link. This promises better operational performance of the AMHS when compared to operating two dedicated AMHS systems, one for interbay transport and the other for intrabay handling. A generic tool for modelling and simulation of an intrabay AMHS (GTIA-M&S) is built, which utilises a library of different blocks representing the different components of any intrabay material handling system. GTIA-M&S provides a means for rapid building and analysis of an intrabay AMHS under different operating conditions. The ease of use of the tool means that inexpert users have the ability to generate good models. Models developed by the tool can be executed with the merge/diverge capability enabled or disabled to provide comparable solutions to production demands and to compare these two different configurations of intrabay AMHS using a single simulation model. Finally, results from simulation experiments on a model developed using the tool were very informative in that they include useful decision making data, which can now be used to further enhance and update the design and operational characteristics of the intrabay AMHS

    Autonomous Finite Capacity Scheduling using Biological Control Principles

    Get PDF
    The vast majority of the research efforts in finite capacity scheduling over the past several years has focused on the generation of precise and almost exact measures for the working schedule presupposing complete information and a deterministic environment. During execution, however, production may be the subject of considerable variability, which may lead to frequent schedule interruptions. Production scheduling mechanisms are developed based on centralised control architecture in which all of the knowledge base and databases are modelled at the same location. This control architecture has difficulty in handling complex manufacturing systems that require knowledge and data at different locations. Adopting biological control principles refers to the process where a schedule is developed prior to the start of the processing after considering all the parameters involved at a resource involved and updated accordingly as the process executes. This research reviews the best practices in gene transcription and translation control methods and adopts these principles in the development of an autonomous finite capacity scheduling control logic aimed at reducing excessive use of manual input in planning tasks. With autonomous decision-making functionality, finite capacity scheduling will as much as practicably possible be able to respond autonomously to schedule disruptions by deployment of proactive scheduling procedures that may be used to revise or re-optimize the schedule when unexpected events occur. The novelty of this work is the ability of production resources to autonomously take decisions and the same way decisions are taken by autonomous entities in the process of gene transcription and translation. The idea has been implemented by the integration of simulation and modelling techniques with Taguchi analysis to investigate the contributions of finite capacity scheduling factors, and determination of the ‘what if’ scenarios encountered due to the existence of variability in production processes. The control logic adopts the induction rules as used in gene expression control mechanisms, studied in biological systems. Scheduling factors are identified to that effect and are investigated to find their effects on selected performance measurements for each resource in used. How they are used to deal with variability in the process is one major objective for this research as it is because of the variability that autonomous decision making becomes of interest. Although different scheduling techniques have been applied and are successful in production planning and control, the results obtained from the inclusion of the autonomous finite capacity scheduling control logic has proved that significant improvement can still be achieved

    PB-NTP-09

    Get PDF
    • 

    corecore