443 research outputs found

    Undergraduate Catalog of Studies, 2023-2024

    Get PDF

    Undergraduate Catalog of Studies, 2023-2024

    Get PDF

    Undergraduate Catalog of Studies, 2022-2023

    Get PDF

    LIPIcs, Volume 261, ICALP 2023, Complete Volume

    Get PDF
    LIPIcs, Volume 261, ICALP 2023, Complete Volum

    Animate Being: Extending a Practice of the Image to New Mediums via Speculative Game Design

    Get PDF
    This post-disciplinary practice as research thesis examines the potential of Carl Jung's therapeutic method of active imagination as a strategy for engaging with an increasingly complex and interconnected technological reality. Embracing a non-clinical, practice-driven approach, I harness James Hillman’s notion of the image and the imaginal to investigate the interdisciplinary capacity and ethical dimensions of an expansive mode of image-work. My approach to practice theoretically and practically intertwines analytical psychology, feminist worlding and design speculation. Building upon Susan Rowland’s work, I study image-work as an ecological alchemical craft that seeks to matter the immaterial. Through the cyclic iterative design of a video game, I mobilise and respond to image-work as a mode of myth-making that may facilitate dialogue between human and non-human intelligences. Departing from the essentialism of the hero's journey, I adopt Le Guin's Carrier Bag (1986/2019) as a feminist video game form and by utilising the framework of a video game (Bogost, 2007; Flannigan, 2013), the alchemical processes of image-work are transformed into novel interactive game mechanics. The game I design is both a vessel and a portal to an imaginal ecological realm, an open-world, procedurally generated ‘living world’ sandbox exploration game. This game integrates real-time, real-world data streams to invite the non-human to enter into play as player two, facilitating experimentation with possible new forms of cross-species dialogue, collaboration, and healing

    Bio-inspired optimization in integrated river basin management

    Get PDF
    Water resources worldwide are facing severe challenges in terms of quality and quantity. It is essential to conserve, manage, and optimize water resources and their quality through integrated water resources management (IWRM). IWRM is an interdisciplinary field that works on multiple levels to maximize the socio-economic and ecological benefits of water resources. Since this is directly influenced by the river’s ecological health, the point of interest should start at the basin-level. The main objective of this study is to evaluate the application of bio-inspired optimization techniques in integrated river basin management (IRBM). This study demonstrates the application of versatile, flexible and yet simple metaheuristic bio-inspired algorithms in IRBM. In a novel approach, bio-inspired optimization algorithms Ant Colony Optimization (ACO) and Particle Swarm Optimization (PSO) are used to spatially distribute mitigation measures within a basin to reduce long-term annual mean total nitrogen (TN) concentration at the outlet of the basin. The Upper Fuhse river basin developed in the hydrological model, Hydrological Predictions for the Environment (HYPE), is used as a case study. ACO and PSO are coupled with the HYPE model to distribute a set of measures and compute the resulting TN reduction. The algorithms spatially distribute nine crop and subbasin-level mitigation measures under four categories. Both algorithms can successfully yield a discrete combination of measures to reduce long-term annual mean TN concentration. They achieved an 18.65% reduction, and their performance was on par with each other. This study has established the applicability of these bio-inspired optimization algorithms in successfully distributing the TN mitigation measures within the river basin. Stakeholder involvement is a crucial aspect of IRBM. It ensures that researchers and policymakers are aware of the ground reality through large amounts of information collected from the stakeholder. Including stakeholders in policy planning and decision-making legitimizes the decisions and eases their implementation. Therefore, a socio-hydrological framework is developed and tested in the Larqui river basin, Chile, based on a field survey to explore the conditions under which the farmers would implement or extend the width of vegetative filter strips (VFS) to prevent soil erosion. The framework consists of a behavioral, social model (extended Theory of Planned Behavior, TPB) and an agent-based model (developed in NetLogo) coupled with the results from the vegetative filter model (Vegetative Filter Strip Modeling System, VFSMOD-W). The results showed that the ABM corroborates with the survey results and the farmers are willing to extend the width of VFS as long as their utility stays positive. This framework can be used to develop tailor-made policies for river basins based on the conditions of the river basins and the stakeholders' requirements to motivate them to adopt sustainable practices. It is vital to assess whether the proposed management plans achieve the expected results for the river basin and if the stakeholders will accept and implement them. The assessment via simulation tools ensures effective implementation and realization of the target stipulated by the decision-makers. In this regard, this dissertation introduces the application of bio-inspired optimization techniques in the field of IRBM. The successful discrete combinatorial optimization in terms of the spatial distribution of mitigation measures by ACO and PSO and the novel socio-hydrological framework using ABM prove the forte and diverse applicability of bio-inspired optimization algorithms

    A Comprehensive Review of Bio-Inspired Optimization Algorithms Including Applications in Microelectronics and Nanophotonics

    Get PDF
    The application of artificial intelligence in everyday life is becoming all-pervasive and unavoidable. Within that vast field, a special place belongs to biomimetic/bio-inspired algorithms for multiparameter optimization, which find their use in a large number of areas. Novel methods and advances are being published at an accelerated pace. Because of that, in spite of the fact that there are a lot of surveys and reviews in the field, they quickly become dated. Thus, it is of importance to keep pace with the current developments. In this review, we first consider a possible classification of bio-inspired multiparameter optimization methods because papers dedicated to that area are relatively scarce and often contradictory. We proceed by describing in some detail some more prominent approaches, as well as those most recently published. Finally, we consider the use of biomimetic algorithms in two related wide fields, namely microelectronics (including circuit design optimization) and nanophotonics (including inverse design of structures such as photonic crystals, nanoplasmonic configurations and metamaterials). We attempted to keep this broad survey self-contained so it can be of use not only to scholars in the related fields, but also to all those interested in the latest developments in this attractive area

    Proceedings of 14th international symposium Modern trends in livestock production

    Get PDF

    CERNAS: Current Evolution and Research Novelty in Agricultural Sustainability

    Get PDF
    Climate changes pose overwhelming impacts on primary production and, consequently, on agricultural and animal farming. Additionally, at present, agriculture still depends strongly on fossil fuels both for energy and production factors ,such as synthetized inorganic fertilizers and harmful chemicals such as pesticides. The need to feed the growing world population poses many challenges. The need to reduce environmental impacts to a minimum, maintain healthy ecosystems, and improve soil microbiota are central to ensuring a promising future for coming generations. Livestock production under cover crop systems helps to alleviate compaction so that oxygen and water can sufficiently flow in the soil, add organic matter, and help hold soil in place, reducing crusting and protecting against erosion. The use of organic plant production practices allied to the control of substances used in agriculture also decisively contributes to alleviating the pressure on ecosystems. Some of the goals of this new decade are to use enhanced sustainable production methodologies to improve the input/output ratios of primary production, reduce environmental impacts, and rely on new innovative technologies. This reprint addresses original studies and reviews focused on the current evolution and research novelty in agricultural sustainability. New developments are discussed on issues related to quality of soil, natural fertilizers, or the sustainable use of land and water. Also, crop protection techniques are pivotal for sustainable food production under the challenges of the Sustainable Development Goals of the United Nations, allied to innovative weed control methodologies as a way to reduce the utilization of pesticides. The role of precision and smart agriculture is becoming more pertinent as communication technologies improve at a rapid rate. Waste management, reuse of agro-industrial residues, extension of shelf life, and use of new technologies are ways to reduce food waste, all contributing to higher sustainability in food supply chains, leading to a more rational use of natural resources. The unquestionable role of bees as pollinators and contributors to biodiversity is adjacent to characterizing beekeeping activities, which in turn contributes, together with the valorization of endemic varieties of plant foods, to the development of local communities. Finally, the short circuits and local food markets have a decisive role in the preservation and enhancement of rural economies.info:eu-repo/semantics/publishedVersio
    • …
    corecore