148 research outputs found

    PSO-based coevolutionary Game Learning

    Get PDF
    Games have been investigated as computationally complex problems since the inception of artificial intelligence in the 1950’s. Originally, search-based techniques were applied to create a competent (and sometimes even expert) game player. The search-based techniques, such as game trees, made use of human-defined knowledge to evaluate the current game state and recommend the best move to make next. Recent research has shown that neural networks can be evolved as game state evaluators, thereby removing the human intelligence factor completely. This study builds on the initial research that made use of evolutionary programming to evolve neural networks in the game learning domain. Particle Swarm Optimisation (PSO) is applied inside a coevolutionary training environment to evolve the weights of the neural network. The training technique is applied to both the zero sum and non-zero sum game domains, with specific application to Tic-Tac-Toe, Checkers and the Iterated Prisoners Dilemma (IPD). The influence of the various PSO parameters on playing performance are experimentally examined, and the overall performance of three different neighbourhood information sharing structures compared. A new coevolutionary scoring scheme and particle dispersement operator are defined, inspired by Formula One Grand Prix racing. Finally, the PSO is applied in three novel ways to evolve strategies for the IPD – the first application of its kind in the PSO field. The PSO-based coevolutionary learning technique described and examined in this study shows promise in evolving intelligent evaluators for the aforementioned games, and further study will be conducted to analyse its scalability to larger search spaces and games of varying complexity.Dissertation (MSc)--University of Pretoria, 2005.Computer Scienceunrestricte

    Emergent communication enhances foraging behaviour in evolved swarms controlled by Spiking Neural Networks

    Full text link
    Social insects such as ants communicate via pheromones which allows them to coordinate their activity and solve complex tasks as a swarm, e.g. foraging for food. This behavior was shaped through evolutionary processes. In computational models, self-coordination in swarms has been implemented using probabilistic or simple action rules to shape the decision of each agent and the collective behavior. However, manual tuned decision rules may limit the behavior of the swarm. In this work we investigate the emergence of self-coordination and communication in evolved swarms without defining any explicit rule. We evolve a swarm of agents representing an ant colony. We use an evolutionary algorithm to optimize a spiking neural network (SNN) which serves as an artificial brain to control the behavior of each agent. The goal of the evolved colony is to find optimal ways to forage for food and return it to the nest in the shortest amount of time. In the evolutionary phase, the ants are able to learn to collaborate by depositing pheromone near food piles and near the nest to guide other ants. The pheromone usage is not manually encoded into the network; instead, this behavior is established through the optimization procedure. We observe that pheromone-based communication enables the ants to perform better in comparison to colonies where communication via pheromone did not emerge. We assess the foraging performance by comparing the SNN based model to a rule based system. Our results show that the SNN based model can efficiently complete the foraging task in a short amount of time. Our approach illustrates self coordination via pheromone emerges as a result of the network optimization. This work serves as a proof of concept for the possibility of creating complex applications utilizing SNNs as underlying architectures for multi-agent interactions where communication and self-coordination is desired.Comment: 27 pages, 16 figure

    Fitness Proportionate Niching: Harnessing The Power Of Evolutionary Algorithms For Evolving Cooperative Populations And Dynamic Clustering

    Get PDF
    Evolutionary algorithms work on the notion of best fit will survive criteria. This makes evolving a cooperative and diverse population in a competing environment via evolutionary algorithms a challenging task. Analogies to species interactions in natural ecological systems have been used to develop methods for maintaining diversity in a population. One such area that mimics species interactions in natural systems is the use of niching. Niching methods extend the application of EAs to areas that seeks to embrace multiple solutions to a given problem. The conventional fitness sharing technique has limitations when the multimodal fitness landscape has unequal peaks. Higher peaks are strong population attractors. And this technique suffers from the curse of population size in attempting to discover all optimum points. The use of high population size makes the technique computationally complex, especially when there is a big jump in fitness values of the peaks. This work introduces a novel bio-inspired niching technique, termed Fitness Proportionate Niching (FPN), based on the analogy of finite resource model where individuals share the resource of a niche in proportion to their actual fitness. FPN makes the search algorithm unbiased to the variation in fitness values of the peaks and hence mitigates the drawbacks of conventional fitness sharing. FPN extends the global search ability of Genetic Algorithms (GAs) for evolving hierarchical cooperation in genetics-based machine learning and dynamic clustering. To this end, this work introduces FPN based resource sharing which leads to the formation of a viable default hierarchy in classifiers for the first time. It results in the co-evolution of default and exception rules, which lead to a robust and concise model description. The work also explores the feasibility and success of FPN for dynamic clustering. Unlike most other clustering techniques, FPN based clustering does not require any a priori information on the distribution of the data

    Evolving machine learning and deep learning models using evolutionary algorithms

    Get PDF
    Despite the great success in data mining, machine learning and deep learning models are yet subject to material obstacles when tackling real-life challenges, such as feature selection, initialization sensitivity, as well as hyperparameter optimization. The prevalence of these obstacles has severely constrained conventional machine learning and deep learning methods from fulfilling their potentials. In this research, three evolving machine learning and one evolving deep learning models are proposed to eliminate above bottlenecks, i.e. improving model initialization, enhancing feature representation, as well as optimizing model configuration, respectively, through hybridization between the advanced evolutionary algorithms and the conventional ML and DL methods. Specifically, two Firefly Algorithm based evolutionary clustering models are proposed to optimize cluster centroids in K-means and overcome initialization sensitivity as well as local stagnation. Secondly, a Particle Swarm Optimization based evolving feature selection model is developed for automatic identification of the most effective feature subset and reduction of feature dimensionality for tackling classification problems. Lastly, a Grey Wolf Optimizer based evolving Convolutional Neural Network-Long Short-Term Memory method is devised for automatic generation of the optimal topological and learning configurations for Convolutional Neural Network-Long Short-Term Memory networks to undertake multivariate time series prediction problems. Moreover, a variety of tailored search strategies are proposed to eliminate the intrinsic limitations embedded in the search mechanisms of the three employed evolutionary algorithms, i.e. the dictation of the global best signal in Particle Swarm Optimization, the constraint of the diagonal movement in Firefly Algorithm, as well as the acute contraction of search territory in Grey Wolf Optimizer, respectively. The remedy strategies include the diversification of guiding signals, the adaptive nonlinear search parameters, the hybrid position updating mechanisms, as well as the enhancement of population leaders. As such, the enhanced Particle Swarm Optimization, Firefly Algorithm, and Grey Wolf Optimizer variants are more likely to attain global optimality on complex search landscapes embedded in data mining problems, owing to the elevated search diversity as well as the achievement of advanced trade-offs between exploration and exploitation

    Multi-energy retail market simulation with autonomous intelligent agents

    Get PDF
    Tese de doutoramento. Engenharia Electrotécnica e de Computadores. 2005. Faculdade de Engenharia. Universidade do Port

    Using MapReduce Streaming for Distributed Life Simulation on the Cloud

    Get PDF
    Distributed software simulations are indispensable in the study of large-scale life models but often require the use of technically complex lower-level distributed computing frameworks, such as MPI. We propose to overcome the complexity challenge by applying the emerging MapReduce (MR) model to distributed life simulations and by running such simulations on the cloud. Technically, we design optimized MR streaming algorithms for discrete and continuous versions of Conway’s life according to a general MR streaming pattern. We chose life because it is simple enough as a testbed for MR’s applicability to a-life simulations and general enough to make our results applicable to various lattice-based a-life models. We implement and empirically evaluate our algorithms’ performance on Amazon’s Elastic MR cloud. Our experiments demonstrate that a single MR optimization technique called strip partitioning can reduce the execution time of continuous life simulations by 64%. To the best of our knowledge, we are the first to propose and evaluate MR streaming algorithms for lattice-based simulations. Our algorithms can serve as prototypes in the development of novel MR simulation algorithms for large-scale lattice-based a-life models.https://digitalcommons.chapman.edu/scs_books/1014/thumbnail.jp

    Understanding responses to environments for the Prisoner's Dilemma: A meta analysis, multidimensional optimisation and machine learning approach

    Get PDF
    This thesis investigates the behaviour that Iterated Prisoner’s Dilemma strategies should adopt as a response to different environments. The Iterated Prisoner’s Dilemma (IPD) is a particular topic of game theory that has attracted academic attention due to its applications in the understanding of the balance between cooperation and com petition in social and biological settings. This thesis uses a variety of mathematical and computational fields such as linear al gebra, research software engineering, data mining, network theory, natural language processing, data analysis, mathematical optimisation, resultant theory, markov mod elling, agent based simulation, heuristics and machine learning. The literature around the IPD has been exploring the performance of strategies in the game for years. The results of this thesis contribute to the discussion of successful performances using various novel approaches. Initially, this thesis evaluates the performance of 195 strategies in 45,600 computer tournaments. A large portion of the 195 strategies are drawn from the known and named strategies in the IPD literature, including many previous tournament winners. The 45,600 computer tournaments include tournament variations such as tournaments with noise, probabilistic match length, and both noise and probabilistic match length. This diversity of strategies and tournament types has resulted in the largest and most diverse collection of computer tournaments in the field. The impact of features on the performance of the 195 strategies is evaluated using modern machine learning and statistical techniques. The results reinforce the idea that there are properties associated with success, these are: be nice, be provocable and generous, be a little envious, be clever, and adapt to the environment. Secondly, this thesis explores well performed behaviour focused on a specific set of IPD strategies called memory-one, and specifically a subset of them that are considered extortionate. These strategies have gained much attention in the research field and have been acclaimed for their performance against single opponents. This thesis uses mathematical modelling to explore the best responses to a collection of memory-one strategies as a multidimensional non-linear optimisation problem, and the benefits of extortionate/manipulative behaviour. The results contribute to the discussion that behaving in an extortionate way is not the optimal play in the IPD, and provide evidence that memory-one strategies suffer from their limited memory in multi agent interactions and can be out performed by longer memory strategies. Following this, the thesis investigates best response strategies in the form of static sequences of moves. It introduces an evolutionary algorithm which can successfully identify best response sequences, and uses a list of 192 opponents to generate a large data set of best response sequences. This data set is then used to train a type of recurrent neural network called the long short-term memory network, which have not gained much attention in the literature. A number of long short-term memory networks are trained to predict the actions of the best response sequences. The trained networks are used to introduce a total of 24 new IPD strategies which were shown to successfully win standard tournaments. From this research the following conclusions are made: there is not a single best strategy in the IPD for varying environments, however, there are properties associated with the strategies’ success distinct to different environments. These properties reinforce and contradict well established results. They include being nice, opening with cooperation, being a little envious, being complex, adapting to the environment and using longer memory when possible
    corecore