537 research outputs found

    Sentiment analysis with genetically evolved Gaussian kernels

    Get PDF
    Sentiment analysis consists of evaluating opinions or statements based on text analysis. Among the methods used to estimate the degree to which a text expresses a certain sentiment are those based on Gaussian Processes. However, traditional Gaussian Processes methods use a prede- fined kernels with hyperparameters that can be tuned but whose structure can not be adapted. In this paper, we propose the application of Genetic Programming for the evolution of Gaussian Process kernels that are more precise for sentiment analysis. We use use a very flexible representation of kernels combined with a multi-objective approach that considers si- multaneously two quality metrics and the computational time required to evaluate those kernels. Our results show that the algorithm can outper- form Gaussian Processes with traditional kernels for some of the sentiment analysis tasks considered

    Improved Composite Q-Function Approximation and its Application in ASEP of Digital Modulations over Fading Channels

    Get PDF
    In this paper, capitalizing on Mils ratio for Qfunction approximation, we have presented novel improved composite Q-function approximation. Based on our improved approximation, we have further presented tight approximation for the average symbol error probability (ASEP) expressions of digital modulations over Nakagami-m fading channels. First, comparison to other known Q-function closed-form approximations has been performed, and it has been shown that accuracy improvement has been achieved in the observed range of values. Further, it has been shown that by using proposed approximation, values of average symbol error probability (ASEP) for some applied modulation formats could be efficiently and accurately evaluated when transmission over Nakagami-m fading channels is observed. Also, it has been shown in the paper that by using proposed approximation, observed ASEP measures are bounded more closely, than by using other known Q-function closed-form approximations

    Towards identifying salient patterns in genetic programming individuals

    Get PDF
    This thesis addresses the problem of offline identification of salient patterns in genetic programming individuals. It discusses the main issues related to automatic pattern identification systems, namely that these (a) should help in understanding the final solutions of the evolutionary run, (b) should give insight into the course of evolution and (c) should be helpful in optimizing future runs. Moreover, it proposes an algorithm, Extended Pattern Growing Algorithm ([E]PGA) to extract, filter and sort the identified patterns so that these fulfill as many as possible of the following criteria: (a) they are representative for the evolutionary run and/or search space, (b) they are human-friendly and (c) their numbers are within reasonable limits. The results are demonstrated on six problems from different domains

    A Field Guide to Genetic Programming

    Get PDF
    xiv, 233 p. : il. ; 23 cm.Libro ElectrónicoA Field Guide to Genetic Programming (ISBN 978-1-4092-0073-4) is an introduction to genetic programming (GP). GP is a systematic, domain-independent method for getting computers to solve problems automatically starting from a high-level statement of what needs to be done. Using ideas from natural evolution, GP starts from an ooze of random computer programs, and progressively refines them through processes of mutation and sexual recombination, until solutions emerge. All this without the user having to know or specify the form or structure of solutions in advance. GP has generated a plethora of human-competitive results and applications, including novel scientific discoveries and patentable inventions. The authorsIntroduction -- Representation, initialisation and operators in Tree-based GP -- Getting ready to run genetic programming -- Example genetic programming run -- Alternative initialisations and operators in Tree-based GP -- Modular, grammatical and developmental Tree-based GP -- Linear and graph genetic programming -- Probalistic genetic programming -- Multi-objective genetic programming -- Fast and distributed genetic programming -- GP theory and its applications -- Applications -- Troubleshooting GP -- Conclusions.Contents xi 1 Introduction 1.1 Genetic Programming in a Nutshell 1.2 Getting Started 1.3 Prerequisites 1.4 Overview of this Field Guide I Basics 2 Representation, Initialisation and GP 2.1 Representation 2.2 Initialising the Population 2.3 Selection 2.4 Recombination and Mutation Operators in Tree-based 3 Getting Ready to Run Genetic Programming 19 3.1 Step 1: Terminal Set 19 3.2 Step 2: Function Set 20 3.2.1 Closure 21 3.2.2 Sufficiency 23 3.2.3 Evolving Structures other than Programs 23 3.3 Step 3: Fitness Function 24 3.4 Step 4: GP Parameters 26 3.5 Step 5: Termination and solution designation 27 4 Example Genetic Programming Run 4.1 Preparatory Steps 29 4.2 Step-by-Step Sample Run 31 4.2.1 Initialisation 31 4.2.2 Fitness Evaluation Selection, Crossover and Mutation Termination and Solution Designation Advanced Genetic Programming 5 Alternative Initialisations and Operators in 5.1 Constructing the Initial Population 5.1.1 Uniform Initialisation 5.1.2 Initialisation may Affect Bloat 5.1.3 Seeding 5.2 GP Mutation 5.2.1 Is Mutation Necessary? 5.2.2 Mutation Cookbook 5.3 GP Crossover 5.4 Other Techniques 32 5.5 Tree-based GP 39 6 Modular, Grammatical and Developmental Tree-based GP 47 6.1 Evolving Modular and Hierarchical Structures 47 6.1.1 Automatically Defined Functions 48 6.1.2 Program Architecture and Architecture-Altering 50 6.2 Constraining Structures 51 6.2.1 Enforcing Particular Structures 52 6.2.2 Strongly Typed GP 52 6.2.3 Grammar-based Constraints 53 6.2.4 Constraints and Bias 55 6.3 Developmental Genetic Programming 57 6.4 Strongly Typed Autoconstructive GP with PushGP 59 7 Linear and Graph Genetic Programming 61 7.1 Linear Genetic Programming 61 7.1.1 Motivations 61 7.1.2 Linear GP Representations 62 7.1.3 Linear GP Operators 64 7.2 Graph-Based Genetic Programming 65 7.2.1 Parallel Distributed GP (PDGP) 65 7.2.2 PADO 67 7.2.3 Cartesian GP 67 7.2.4 Evolving Parallel Programs using Indirect Encodings 68 8 Probabilistic Genetic Programming 8.1 Estimation of Distribution Algorithms 69 8.2 Pure EDA GP 71 8.3 Mixing Grammars and Probabilities 74 9 Multi-objective Genetic Programming 75 9.1 Combining Multiple Objectives into a Scalar Fitness Function 75 9.2 Keeping the Objectives Separate 76 9.2.1 Multi-objective Bloat and Complexity Control 77 9.2.2 Other Objectives 78 9.2.3 Non-Pareto Criteria 80 9.3 Multiple Objectives via Dynamic and Staged Fitness Functions 80 9.4 Multi-objective Optimisation via Operator Bias 81 10 Fast and Distributed Genetic Programming 83 10.1 Reducing Fitness Evaluations/Increasing their Effectiveness 83 10.2 Reducing Cost of Fitness with Caches 86 10.3 Parallel and Distributed GP are Not Equivalent 88 10.4 Running GP on Parallel Hardware 89 10.4.1 Master–slave GP 89 10.4.2 GP Running on GPUs 90 10.4.3 GP on FPGAs 92 10.4.4 Sub-machine-code GP 93 10.5 Geographically Distributed GP 93 11 GP Theory and its Applications 97 11.1 Mathematical Models 98 11.2 Search Spaces 99 11.3 Bloat 101 11.3.1 Bloat in Theory 101 11.3.2 Bloat Control in Practice 104 III Practical Genetic Programming 12 Applications 12.1 Where GP has Done Well 12.2 Curve Fitting, Data Modelling and Symbolic Regression 12.3 Human Competitive Results – the Humies 12.4 Image and Signal Processing 12.5 Financial Trading, Time Series, and Economic Modelling 12.6 Industrial Process Control 12.7 Medicine, Biology and Bioinformatics 12.8 GP to Create Searchers and Solvers – Hyper-heuristics xiii 12.9 Entertainment and Computer Games 127 12.10The Arts 127 12.11Compression 128 13 Troubleshooting GP 13.1 Is there a Bug in the Code? 13.2 Can you Trust your Results? 13.3 There are No Silver Bullets 13.4 Small Changes can have Big Effects 13.5 Big Changes can have No Effect 13.6 Study your Populations 13.7 Encourage Diversity 13.8 Embrace Approximation 13.9 Control Bloat 13.10 Checkpoint Results 13.11 Report Well 13.12 Convince your Customers 14 Conclusions Tricks of the Trade A Resources A.1 Key Books A.2 Key Journals A.3 Key International Meetings A.4 GP Implementations A.5 On-Line Resources 145 B TinyGP 151 B.1 Overview of TinyGP 151 B.2 Input Data Files for TinyGP 153 B.3 Source Code 154 B.4 Compiling and Running TinyGP 162 Bibliography 167 Inde

    AN INVESTIGATION OF EVOLUTIONARY COMPUTING IN SYSTEMS IDENTIFICATION FOR PRELIMINARY DESIGN

    Get PDF
    This research investigates the integration of evolutionary techniques for symbolic regression. In particular the genetic programming paradigm is used together with other evolutionary computational techniques to develop novel approaches to the improvement of areas of simple preliminary design software using empirical data sets. It is shown that within this problem domain, conventional genetic programming suffers from several limitations, which are overcome by the introduction of an improved genetic programming strategy based on node complexity values, and utilising a steady state algorithm with subpopulations. A further extension to the new technique is introduced which incorporates a genetic algorithm to aid the search within continuous problem spaces, increasing the robustness of the new method. The work presented here represents an advance in the Geld of genetic programming for symbolic regression with significant improvements over the conventional genetic programming approach. Such improvement is illustrated by extensive experimentation utilising both simple test functions and real-world design examples

    Mining Explicit and Implicit Relationships in Data Using Symbolic Regression

    Full text link
    Identification of implicit and explicit relations within observed data is a generic problem commonly encountered in several domains including science, engineering, finance, and more. It forms the core component of data analytics, a process of discovering useful information from data sets that are potentially huge and otherwise incomprehensible. In industries, such information is often instrumental for profitable decision making, whereas in science and engineering it is used to build empirical models, propose new or verify existing theories and explain natural phenomena. In recent times, digital and internet based technologies have proliferated, making it viable to generate and collect large amount of data at low cost. This inturn has resulted in an ever growing need for methods to analyse and draw interpretations from such data quickly and reliably. With this overarching goal, this thesis attempts to make contributions towards developing accurate and efficient methods for discovering such relations through evolutionary search, a method commonly referred to as Symbolic Regression (SR). A data set of input variables x and a corresponding observed response y is given. The aim is to find an explicit function y = f (x) or an implicit function f (x, y) = 0, which represents the data set. While seemingly simple, the problem is challenging for several reasons. Some of the conventional regression methods try to “guess” a functional form such as linear/quadratic/polynomial, and attempt to do a curve-fitting of the data to the equation, which may limit the possibility of discovering more complex relations, if they exist. On the other hand, there are meta-modelling techniques such as response surface method, Kriging, etc., that model the given data accurately, but provide a “black-box” predictor instead of an expression. Such approximations convey little or no insights about how the variables and responses are dependent on each other, or their relative contribution to the output. SR attempts to alleviate the above two extremes by providing a structure which evolves mathematical expressions instead of assuming them. Thus, it is flexible enough to represent the data, but at the same time provides useful insights instead of a black-box predictor. SR can be categorized as part of Explainable Artificial Intelligence and can contribute to Trustworthy Artificial Intelligence. The works proposed in this thesis aims to integrate the concept of “semantics” deeper into Genetic Programming (GP) and Evolutionary Feature Synthesis, which are the two algorithms usually employed for conducting SR. The semantics will be integrated into well-known components of the algorithms such as compactness, diversity, recombination, constant optimization, etc. The main contribution of this thesis is the proposal of two novel operators to generate expressions based on Linear Programming and Mixed Integer Programming with the aim of controlling the length of the discovered expressions without compromising on the accuracy. In the experiments, these operators are proven to be able to discover expressions with better accuracy and interpretability on many explicit and implicit benchmarks. Moreover, some applications of SR on real-world data sets are shown to demonstrate the practicality of the proposed approaches. Besides, in related to practical problems, how GP can be applied to effectively solve the Resource Constrained Scheduling Problems is also presented

    A Genetic Programming Based Heuristic to Simplify Rugged Landscapes Exploration

    Get PDF
    Some optimization problems are difficult to solve due to a considerable number of local optima, which may result in premature convergence of the optimization process. To address this problem, we propose a novel heuristic method for constructing a smooth surrogate model of the original function. The surrogate function is easier to optimize but maintains a fundamental property of the original rugged fitness landscape: the location of the global optimum. To create such a surrogate model, we consider a linear genetic programming approach coupled with a self-tuning fitness function. More specifically, to evaluate the fitness of the produced surrogate functions, we employ Fuzzy Self-Tuning Particle Swarm Optimization, a setting-free version of particle swarm optimization. To assess the performance of the proposed method, we considered a set of benchmark functions characterized by high noise and ruggedness. Moreover, the method is evaluated over different problems’ dimensionalities. The proposed approach reveals its suitability for performing the proposed task. In particular, experimental results confirm its capability to find the global argminimum for all the considered benchmark problems and all the domain dimensions taken into account, thus providing an innovative and promising strategy for dealing with challenging optimization problems. Doi: 10.28991/ESJ-2023-07-04-01 Full Text: PD

    Theory grounded design of genetic programming and parallel evolutionary algorithms

    Get PDF
    Evolutionary algorithms (EAs) have been successfully applied to many problems and applications. Their success comes from being general purpose, which means that the same EA can be used to solve different problems. Despite that, many factors can affect the behaviour and the performance of an EA and it has been proven that there isn't a particular EA which can solve efficiently any problem. This opens to the issue of understanding how different design choices can affect the performance of an EA and how to efficiently design and tune one. This thesis has two main objectives. On the one hand we will advance the theoretical understanding of evolutionary algorithms, particularly focusing on Genetic Programming and Parallel Evolutionary algorithms. We will do that trying to understand how different design choices affect the performance of the algorithms and providing rigorously proven bounds of the running time for different designs. This novel knowledge, built upon previous work on the theoretical foundation of EAs, will then help for the second objective of the thesis, which is to provide theory grounded design for Parallel Evolutionary Algorithms and Genetic Programming. This will consist in being inspired by the analysis of the algorithms to produce provably good algorithm designs

    Field Guide to Genetic Programming

    Get PDF
    • …
    corecore