27 research outputs found

    Exploring Behavior Discovery Methods for Heterogeneous Swarms of Limited-Capability Robots

    Full text link
    We study the problem of determining the emergent behaviors that are possible given a functionally heterogeneous swarm of robots with limited capabilities. Prior work has considered behavior search for homogeneous swarms and proposed the use of novelty search over either a hand-specified or learned behavior space followed by clustering to return a taxonomy of emergent behaviors to the user. In this paper, we seek to better understand the role of novelty search and the efficacy of using clustering to discover novel emergent behaviors. Through a large set of experiments and ablations, we analyze the effect of representations, evolutionary search, and various clustering methods in the search for novel behaviors in a heterogeneous swarm. Our results indicate that prior methods fail to discover many interesting behaviors and that an iterative human-in-the-loop discovery process discovers more behaviors than random search, swarm chemistry, and automated behavior discovery. The combined discoveries of our experiments uncover 23 emergent behaviors, 18 of which are novel discoveries. To the best of our knowledge, these are the first known emergent behaviors for heterogeneous swarms of computation-free agents. Videos, code, and appendix are available at the project website: https://sites.google.com/view/heterogeneous-bd-methodsComment: 11 pages, 9 figures, To be published in Proceedings IEEE International Symposium on Multi-Robot & Multi-Agent Systems (MRS 2023

    Finding consensus without computation

    Get PDF
    A canonical problem for swarms of agents is to collectively choose one of multiple options in their environment. We present a novel control strategy for solving this problem-the first to be free of arithmetic computation. The agents do not communicate with each other nor do they store run-time information. They have a line-of-sight sensor that extracts one ternary digit of information from the environment. At every time step, they directly map this information onto constant-value motor commands. We evaluate the control strategy with both simulated and physical e-puck robots. By default, the robots are expected to choose, and move to, one of two options of equal value. The simulation studies show that the strategy is robust against sensory noise, scalable to large swarm sizes, and generalizes to the problems of choosing between more than two options or between unequal options. The experiments-50 trials conducted with a group of 20 e-puck robots-show that the group achieves consensus in 96% of the trials. Given the extremely low hardware requirements of the strategy, it opens up new possibilities for the design of swarms of robots that are small in size (≪10 -3 m) and large in numbers (≫10 3 )

    Hierarchical Behaviour for Object Shape Recognition Using a Swarm of Robots

    Get PDF

    Shepherding with robots that do not compute

    Get PDF
    We examine the problem solving capabilities of swarms of computation- and memory-free agents. Each agent has a single line-of-sight sensor providing two bits of information. The agent maps this information directly onto constant motor commands. In previous work, we showed that such simplistic agents can solve tasks requiring them to organize spatially (multi-robot aggregation and circle formation) and manipulate passive objects (clustering). In the present work, we address the shepherding problem, where the computation- and memory-free agents—the shepherds—are tasked to gather and move a group of dynamic agents—the sheep—towards a pre-defined goal. The shepherds and sheep are modelled as e-puck robots using computer simulations. Our findings show that the shepherding problem does not fundamentally require arithmetic computation or memory to be solved. The obtained controller solution is robust with respect to sensory noise, and copes well with changes in the number of sheep

    Multi‑Agent Foraging: state‑of‑the‑art and research challenges

    Get PDF
    International audienceThe foraging task is one of the canonical testbeds for cooperative robotics, in which a collection of robots has to search and transport objects to specific storage point(s). In this paper, we investigate the Multi-Agent Foraging (MAF) problem from several perspectives that we analyze in depth. First, we define the Foraging Problem according to literature definitions. Then we analyze previously proposed taxonomies, and propose a new foraging taxonomy characterized by four principal axes: Environment, Collective, Strategy and Simulation, summarize related foraging works and classify them through our new foraging taxonomy. Then, we discuss the real implementation of MAF and present a comparison between some related foraging works considering important features that show extensibility, reliability and scalability of MAF systems. Finally we present and discuss recent trends in this field, emphasizing the various challenges that could enhance the existing MAF solutions and make them realistic

    Goal Based Human Swarm Interaction for Collaborative Transport

    Get PDF
    Human-swarm interaction is an important milestone for the introduction of swarm-intelligence based solutions into real application scenarios. One of the main hurdles towards this goal is the creation of suitable interfaces for humans to convey the correct intent to multiple robots. As the size of the swarm increases, the complexity of dealing with explicit commands for individual robots becomes intractable. This brings a great challenge for the developer or the operator to drive robots to finish even the most basic tasks. In our work, we consider a different approach that humans specify only the desired goal rather than issuing individual commands necessary to obtain this task. We explore this approach in a collaborative transport scenario, where the user chooses the target position of an object, and a group of robots moves it by adapting themselves to the environment. The main outcome of this thesis is the design of integration of a collaborative transport behavior of swarm robots and an augmented reality human interface. We implemented an augmented reality (AR) application in which a virtual object is displayed overlapped on a detected target object. Users can manipulate the virtual object to generate the goal configuration for the object. The designed centralized controller translate the goal position to the robots and synchronize the state transitions. The whole system is tested on Khepera IV robots through the integration of Vicon system and ARGoS simulator

    Collective behavior and task persistification in lazy and minimalist collectives

    Get PDF
    When individuals in a collective system are constrained in terms of sensing, memory, computation, or power reserves; the design of algorithms to control them becomes challenging. These individual limitations can be due to multiple reasons like the shrinking size of each agent for bulk manufacturing efficiency or enforced simplicity to attain cost efficiency. Whereas, in some areas like nano-medicine, the nature of the task itself warrants such simplicity. This thesis presents algorithms inspired by biological and statistical physics models to achieve useful collective behavior through simple local physical interactions and, minimalist approaches to persistify tasks for long durations in collectives with limited capabilities and energy reserves. The first part of the thesis presents a system of vibration-driven robots that embodies the features of simplicity described above. A combination of theory, experiment, and simulation is used to study dynamic aggregation behavior in these robots facilitated via short-range physical attraction potentials between agents. Collectives in a dynamically aggregated state are shown to be capable of transporting objects over relatively long distances in a finite arena. In the rest of the thesis, two different, yet complementary systems are studied and elaborated to highlight the usefulness of distributed inactivity and activity modulation in aiding persistification of tasks in collectives incapable of implementing complicated algorithms to incorporate regular energy replenishing cycles. To summarize, an approach to achieving dynamic aggregation and related tasks like object transport in a constrained brushbot system is described. Two different artificial and biological collective systems are explored to reveal strategies through which tasks can be persistified without requiring complicated computations, sensing, and memory.Ph.D

    An Approach Based on Particle Swarm Optimization for Inspection of Spacecraft Hulls by a Swarm of Miniaturized Robots

    Get PDF
    The remoteness and hazards that are inherent to the operating environments of space infrastructures promote their need for automated robotic inspection. In particular, micrometeoroid and orbital debris impact and structural fatigue are common sources of damage to spacecraft hulls. Vibration sensing has been used to detect structural damage in spacecraft hulls as well as in structural health monitoring practices in industry by deploying static sensors. In this paper, we propose using a swarm of miniaturized vibration-sensing mobile robots realizing a network of mobile sensors. We present a distributed inspection algorithm based on the bio-inspired particle swarm optimization and evolutionary algorithm niching techniques to deliver the task of enumeration and localization of an a priori unknown number of vibration sources on a simplified 2.5D spacecraft surface. Our algorithm is deployed on a swarm of simulated cm-scale wheeled robots. These are guided in their inspection task by sensing vibrations arising from failure points on the surface which are detected by on-board accelerometers. We study three performance metrics: (1) proximity of the localized sources to the ground truth locations, (2) time to localize each source, and (3) time to finish the inspection task given a 75% inspection coverage threshold. We find that our swarm is able to successfully localize the present so

    Synthesis and Analysis of Minimalist Control Strategies for Swarm Robotic Systems

    Get PDF
    The field of swarm robotics studies bio-inspired cooperative control strategies for large groups of relatively simple robots. The robots are limited in their individual capabilities, however, by inducing cooperation amongst them, the limitations can be overcome. Local sensing and interactions within the robotic swarm promote scalable, robust, and flexible behaviours. This thesis focuses on synthesising and analysing minimalist control strategies for swarm robotic systems. Using a computation-free swarming framework, multiple decentralised control strategies are synthesised and analysed. The control strategies enable the robots—equipped with only discrete-valued sensors—to reactively respond to their environment. We present the simplest control solutions to date to four multi-agent problems: finding consensus, gathering on a grid, shepherding, and spatial coverage. The control solutions—obtained by employing an offline evolutionary robotics approach—are tested, either in computer simulation or by physical experiment. They are shown to be—up to a certain extent—scalable, robust against sensor noise, and flexible to the changes in their environment. The investigated gathering problem is proven to be unsolvable using the deterministic framework. The extended framework, using stochastic reactive controllers, is applied to obtain provably correct solutions. Using no run-time memory and only limited sensing make it possible to realise implementations that are arguably free of arithmetic computation. Due to the low computational demands, the control solutions may enable or inspire novel applications, for example, in nanomedicine
    corecore