825 research outputs found

    Deep Learning in Cardiology

    Full text link
    The medical field is creating large amount of data that physicians are unable to decipher and use efficiently. Moreover, rule-based expert systems are inefficient in solving complicated medical tasks or for creating insights using big data. Deep learning has emerged as a more accurate and effective technology in a wide range of medical problems such as diagnosis, prediction and intervention. Deep learning is a representation learning method that consists of layers that transform the data non-linearly, thus, revealing hierarchical relationships and structures. In this review we survey deep learning application papers that use structured data, signal and imaging modalities from cardiology. We discuss the advantages and limitations of applying deep learning in cardiology that also apply in medicine in general, while proposing certain directions as the most viable for clinical use.Comment: 27 pages, 2 figures, 10 table

    Theoretical Interpretations and Applications of Radial Basis Function Networks

    Get PDF
    Medical applications usually used Radial Basis Function Networks just as Artificial Neural Networks. However, RBFNs are Knowledge-Based Networks that can be interpreted in several way: Artificial Neural Networks, Regularization Networks, Support Vector Machines, Wavelet Networks, Fuzzy Controllers, Kernel Estimators, Instanced-Based Learners. A survey of their interpretations and of their corresponding learning algorithms is provided as well as a brief survey on dynamic learning algorithms. RBFNs' interpretations can suggest applications that are particularly interesting in medical domains

    A Powerful Paradigm for Cardiovascular Risk Stratification Using Multiclass, Multi-Label, and Ensemble-Based Machine Learning Paradigms: A Narrative Review

    Get PDF
    Background and Motivation: Cardiovascular disease (CVD) causes the highest mortality globally. With escalating healthcare costs, early non-invasive CVD risk assessment is vital. Conventional methods have shown poor performance compared to more recent and fast-evolving Artificial Intelligence (AI) methods. The proposed study reviews the three most recent paradigms for CVD risk assessment, namely multiclass, multi-label, and ensemble-based methods in (i) office-based and (ii) stress-test laboratories. Methods: A total of 265 CVD-based studies were selected using the preferred reporting items for systematic reviews and meta-analyses (PRISMA) model. Due to its popularity and recent development, the study analyzed the above three paradigms using machine learning (ML) frameworks. We review comprehensively these three methods using attributes, such as architecture, applications, pro-and-cons, scientific validation, clinical evaluation, and AI risk-of-bias (RoB) in the CVD framework. These ML techniques were then extended under mobile and cloud-based infrastructure. Findings: Most popular biomarkers used were office-based, laboratory-based, image-based phenotypes, and medication usage. Surrogate carotid scanning for coronary artery risk prediction had shown promising results. Ground truth (GT) selection for AI-based training along with scientific and clinical validation is very important for CVD stratification to avoid RoB. It was observed that the most popular classification paradigm is multiclass followed by the ensemble, and multi-label. The use of deep learning techniques in CVD risk stratification is in a very early stage of development. Mobile and cloud-based AI technologies are more likely to be the future. Conclusions: AI-based methods for CVD risk assessment are most promising and successful. Choice of GT is most vital in AI-based models to prevent the RoB. The amalgamation of image-based strategies with conventional risk factors provides the highest stability when using the three CVD paradigms in non-cloud and cloud-based frameworks

    Significant Feature Selection Method for Health Domain using Computational Intelligence- A Case Study for Heart Disease

    Get PDF
    In the medical field, the diagnosing of cardiovascular disease is that the most troublesome task. The diagnosis of heart disease is difficult as a decision relied on grouping of large clinical and pathological data. Due to this complication, the interest increased in a very vital quantity between the researchers and clinical professionals regarding the economical and correct heart disease prediction. In case of heart disease, the correct diagnosis in early stage is important as time is the very important factor. Heart disease is the principal supply of deaths widespread, and the prediction of Heart Disease is significant at an untimely phase. Machine learning in recent years has been the evolving, reliable and supporting tools in medical domain and has provided the best support for predicting disease with correct case of training and testing. The main idea behind this work is to find relevant heart disease feature among the large number of feature using rough computational Intelligence approach. The proposed feature selection approach performance is better than traditional feature selection approaches. The performances of the rough computation approach is tested with different heart disease data sets and validated with real-time data sets

    Synergy of Physics-based Reasoning and Machine Learning in Biomedical Applications: Towards Unlimited Deep Learning with Limited Data

    Get PDF
    Technological advancements enable collecting vast data, i.e., Big Data, in science and industry including biomedical field. Increased computational power allows expedient analysis of collected data using statistical and machine-learning approaches. Historical data incompleteness problem and curse of dimensionality diminish practical value of pure data-driven approaches, especially in biomedicine. Advancements in deep learning (DL) frameworks based on deep neural networks (DNN) improved accuracy in image recognition, natural language processing, and other applications yet severe data limitations and/or absence of transfer-learning-relevant problems drastically reduce advantages of DNN-based DL. Our earlier works demonstrate that hierarchical data representation can be alternatively implemented without NN, using boosting-like algorithms for utilization of existing domain knowledge, tolerating significant data incompleteness, and boosting accuracy of low-complexity models within the classifier ensemble, as illustrated in physiological-data analysis. Beyond obvious use in initial-factor selection, existing simplified models are effectively employed for generation of realistic synthetic data for later DNN pre-training. We review existing machine learning approaches, focusing on limitations caused by training-data incompleteness. We outline our hybrid framework that leverages existing domain-expert models/knowledge, boosting-like model combination, DNN-based DL and other machine learning algorithms for drastic reduction of training-data requirements. Applying this framework is illustrated in context of analyzing physiological data

    Thirty years of artificial intelligence in medicine (AIME) conferences: A review of research themes

    Get PDF
    Over the past 30 years, the international conference on Artificial Intelligence in MEdicine (AIME) has been organized at different venues across Europe every 2 years, establishing a forum for scientific exchange and creating an active research community. The Artificial Intelligence in Medicine journal has published theme issues with extended versions of selected AIME papers since 1998

    Physiological Approach To Characterize Drowsiness In Simulated Flight Operations During Window Of Circadian Low

    Get PDF
    Drowsiness is a psycho-physiological transition from awake towards falling sleep and its detection is crucial in aviation industries. It is a common cause for pilot’s error due to unpredictable work hours, longer flight periods, circadian disruption, and insufficient sleep. The pilots’ are prone towards higher level of drowsiness during window of circadian low (2:00 am- 6:00 am). Airplanes require complex operations and lack of alertness increases accidents. Aviation accidents are much disastrous and early drowsiness detection helps to reduce such accidents. This thesis studied physiological signals during drowsiness from 18 commercially-rated pilots in flight simulator. The major aim of the study was to observe the feasibility of physiological signals to predict drowsiness. In chapter 3, the spectral behavior of electroencephalogram (EEG) was studied via power spectral density and coherence. The delta power reduced and alpha power increased significantly (
    • …
    corecore