272 research outputs found

    Graphical Models for Multivariate Time-Series

    Get PDF
    Gaussian graphical models have received much attention in the last years, due to their flexibility and expression power. In particular, lots of interests have been devoted to graphical models for temporal data, or dynamical graphical models, to understand the relation of variables evolving in time. While powerful in modelling complex systems, such models suffer from computational issues both in terms of convergence rates and memory requirements, and may fail to detect temporal patterns in case the information on the system is partial. This thesis comprises two main contributions in the context of dynamical graphical models, tackling these two aspects: the need of reliable and fast optimisation methods and an increasing modelling power, which are able to retrieve the model in practical applications. The first contribution consists in a forward-backward splitting (FBS) procedure for Gaussian graphical modelling of multivariate time-series which relies on recent theoretical studies ensuring global convergence under mild assumptions. Indeed, such FBS-based implementation achieves, with fast convergence rates, optimal results with respect to ground truth and standard methods for dynamical network inference. The second main contribution focuses on the problem of latent factors, that influence the system while hidden or unobservable. This thesis proposes the novel latent variable time-varying graphical lasso method, which is able to take into account both temporal dynamics in the data and latent factors influencing the system. This is fundamental for the practical use of graphical models, where the information on the data is partial. Indeed, extensive validation of the method on both synthetic and real applications shows the effectiveness of considering latent factors to deal with incomplete information

    Histopathological image analysis : a review

    Get PDF
    Over the past decade, dramatic increases in computational power and improvement in image analysis algorithms have allowed the development of powerful computer-assisted analytical approaches to radiological data. With the recent advent of whole slide digital scanners, tissue histopathology slides can now be digitized and stored in digital image form. Consequently, digitized tissue histopathology has now become amenable to the application of computerized image analysis and machine learning techniques. Analogous to the role of computer-assisted diagnosis (CAD) algorithms in medical imaging to complement the opinion of a radiologist, CAD algorithms have begun to be developed for disease detection, diagnosis, and prognosis prediction to complement the opinion of the pathologist. In this paper, we review the recent state of the art CAD technology for digitized histopathology. This paper also briefly describes the development and application of novel image analysis technology for a few specific histopathology related problems being pursued in the United States and Europe

    Evolutionary optimization of classifiers and features for single-trial EEG Discrimination

    Get PDF
    which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Background: State-of-the-art signal processing methods are known to detect information in single-trial event-related EEG data, a crucial aspect in development of real-time applications such as brain computer interfaces. This paper investigates one such novel approach, evaluating how individual classifier and feature subset tailoring affects classification of single-trial EEG finger movements. The discrete wavelet transform was used to extract signal features that were classified using linear regression and non-linear neural network models, which were trained and architecturally optimized with evolutionary algorithms. The input feature subsets were also allowed to evolve, thus performing feature selection in a wrapper fashion. Filter approaches were implemented as well by limiting the degree of optimization. Results: Using only 10 features and 100 patterns, the non-linear wrapper approach achieved the highest validation classification accuracy (subject mean 75%), closely followed by the linear wrapper method (73.5%). The optimal features differed much between subjects, yet some physiologically plausible patterns were observed

    Feature selection using Haar wavelet power spectrum

    Get PDF
    BACKGROUND: Feature selection is an approach to overcome the 'curse of dimensionality' in complex researches like disease classification using microarrays. Statistical methods are utilized more in this domain. Most of them do not fit for a wide range of datasets. The transform oriented signal processing domains are not probed much when other fields like image and video processing utilize them well. Wavelets, one of such techniques, have the potential to be utilized in feature selection method. The aim of this paper is to assess the capability of Haar wavelet power spectrum in the problem of clustering and gene selection based on expression data in the context of disease classification and to propose a method based on Haar wavelet power spectrum. RESULTS: Haar wavelet power spectra of genes were analysed and it was observed to be different in different diagnostic categories. This difference in trend and magnitude of the spectrum may be utilized in gene selection. Most of the genes selected by earlier complex methods were selected by the very simple present method. Each earlier works proved only few genes are quite enough to approach the classification problem [1]. Hence the present method may be tried in conjunction with other classification methods. The technique was applied without removing the noise in data to validate the robustness of the method against the noise or outliers in the data. No special softwares or complex implementation is needed. The qualities of the genes selected by the present method were analysed through their gene expression data. Most of them were observed to be related to solve the classification issue since they were dominant in the diagnostic category of the dataset for which they were selected as features. CONCLUSION: In the present paper, the problem of feature selection of microarray gene expression data was considered. We analyzed the wavelet power spectrum of genes and proposed a clustering and feature selection method useful for classification based on Haar wavelet power spectrum. Application of this technique in this area is novel, simple, and faster than other methods, fit for a wide range of data types. The results are encouraging and throw light into the possibility of using this technique for problem domains like disease classification, gene network identification and personalized drug design

    Artificial Intelligence Techniques in Medical Imaging: A Systematic Review

    Get PDF
    This scientific review presents a comprehensive overview of medical imaging modalities and their diverse applications in artificial intelligence (AI)-based disease classification and segmentation. The paper begins by explaining the fundamental concepts of AI, machine learning (ML), and deep learning (DL). It provides a summary of their different types to establish a solid foundation for the subsequent analysis. The prmary focus of this study is to conduct a systematic review of research articles that examine disease classification and segmentation in different anatomical regions using AI methodologies. The analysis includes a thorough examination of the results reported in each article, extracting important insights and identifying emerging trends. Moreover, the paper critically discusses the challenges encountered during these studies, including issues related to data availability and quality, model generalization, and interpretability. The aim is to provide guidance for optimizing technique selection. The analysis highlights the prominence of hybrid approaches, which seamlessly integrate ML and DL techniques, in achieving effective and relevant results across various disease types. The promising potential of these hybrid models opens up new opportunities for future research in the field of medical diagnosis. Additionally, addressing the challenges posed by the limited availability of annotated medical images through the incorporation of medical image synthesis and transfer learning techniques is identified as a crucial focus for future research efforts

    A Survey on Evolutionary Computation for Computer Vision and Image Analysis: Past, Present, and Future Trends

    Get PDF
    Computer vision (CV) is a big and important field in artificial intelligence covering a wide range of applications. Image analysis is a major task in CV aiming to extract, analyse and understand the visual content of images. However, imagerelated tasks are very challenging due to many factors, e.g., high variations across images, high dimensionality, domain expertise requirement, and image distortions. Evolutionary computation (EC) approaches have been widely used for image analysis with significant achievement. However, there is no comprehensive survey of existing EC approaches to image analysis. To fill this gap, this paper provides a comprehensive survey covering all essential EC approaches to important image analysis tasks including edge detection, image segmentation, image feature analysis, image classification, object detection, and others. This survey aims to provide a better understanding of evolutionary computer vision (ECV) by discussing the contributions of different approaches and exploring how and why EC is used for CV and image analysis. The applications, challenges, issues, and trends associated to this research field are also discussed and summarised to provide further guidelines and opportunities for future research

    Genetic Programming based Feature Manipulation for Skin Cancer Image Classification

    Get PDF
    Skin image classification involves the development of computational methods for solving problems such as cancer detection in lesion images, and their use for biomedical research and clinical care. Such methods aim at extracting relevant information or knowledge from skin images that can significantly assist in the early detection of disease. Skin images are enormous, and come with various artifacts that hinder effective feature extraction leading to inaccurate classification. Feature selection and feature construction can significantly reduce the amount of data while improving classification performance by selecting prominent features and constructing high-level features. Existing approaches mostly rely on expert intervention and follow multiple stages for pre-processing, feature extraction, and classification, which decreases the reliability, and increases the computational complexity. Since good generalization accuracy is not always the primary objective, clinicians are also interested in analyzing specific features such as pigment network, streaks, and blobs responsible for developing the disease; interpretable methods are favored. In Evolutionary Computation, Genetic Programming (GP) can automatically evolve an interpretable model and address the curse of dimensionality (through feature selection and construction). GP has been successfully applied to many areas, but its potential for feature selection, feature construction, and classification in skin images has not been thoroughly investigated. The overall goal of this thesis is to develop a new GP approach to skin image classification by utilizing GP to evolve programs that are capable of automatically selecting prominent image features, constructing new high level features, interpreting useful image features which can help dermatologist to diagnose a type of cancer, and are robust to processing skin images captured from specialized instruments and standard cameras. This thesis focuses on utilizing a wide range of texture, color, frequency-based, local, and global image properties at the terminal nodes of GP to classify skin cancer images from multiple modalities effectively. This thesis develops new two-stage GP methods using embedded and wrapper feature selection and construction approaches to automatically generating a feature vector of selected and constructed features for classification. The results show that wrapper approach outperforms the embedded approach, the existing baseline GP and other machine learning methods, but the embedded approach is faster than the wrapper approach. This thesis develops a multi-tree GP based embedded feature selection approach for melanoma detection using domain specific and domain independent features. It explores suitable crossover and mutation operators to evolve GP classifiers effectively and further extends this approach using a weighted fitness function. The results show that these multi-tree approaches outperformed single tree GP and other classification methods. They identify that a specific feature extraction method extracts most suitable features for particular images taken from a specific optical instrument. This thesis develops the first GP method utilizing frequency-based wavelet features, where the wrapper based feature selection and construction methods automatically evolve useful constructed features to improve the classification performance. The results show the evidence of successful feature construction by significantly outperforming existing GP approaches, state-of-the-art CNN, and other classification methods. This thesis develops a GP approach to multiple feature construction for ensemble learning in classification. The results show that the ensemble method outperformed existing GP approaches, state-of-the-art skin image classification, and commonly used ensemble methods. Further analysis of the evolved constructed features identified important image features that can potentially help the dermatologist identify further medical procedures in real-world situations

    Cascade of classifier ensembles for reliable medical image classification

    Get PDF
    Medical image analysis and recognition is one of the most important tools in modern medicine. Different types of imaging technologies such as X-ray, ultrasonography, biopsy, computed tomography and optical coherence tomography have been widely used in clinical diagnosis for various kinds of diseases. However, in clinical applications, it is usually time consuming to examine an image manually. Moreover, there is always a subjective element related to the pathological examination of an image. This produces the potential risk of a doctor to make a wrong decision. Therefore, an automated technique will provide valuable assistance for physicians. By utilizing techniques from machine learning and image analysis, this thesis aims to construct reliable diagnostic models for medical image data so as to reduce the problems faced by medical experts in image examination. Through supervised learning of the image data, the diagnostic model can be constructed automatically. The process of image examination by human experts is very difficult to simulate, as the knowledge of medical experts is often fuzzy and not easy to be quantified. Therefore, the problem of automatic diagnosis based on images is usually converted to the problem of image classification. For the image classification tasks, using a single classifier is often hard to capture all aspects of image data distributions. Therefore, in this thesis, a classifier ensemble based on random subspace method is proposed to classify microscopic images. The multi-layer perceptrons are used as the base classifiers in the ensemble. Three types of feature extraction methods are selected for microscopic image description. The proposed method was evaluated on two microscopic image sets and showed promising results compared with the state-of-art results. In order to address the classification reliability in biomedical image classification problems, a novel cascade classification system is designed. Two random subspace based classifier ensembles are serially connected in the proposed system. In the first stage of the cascade system, an ensemble of support vector machines are used as the base classifiers. The second stage consists of a neural network classifier ensemble. Using the reject option, the images whose classification results cannot achieve the predefined rejection threshold at the current stage will be passed to the next stage for further consideration. The proposed cascade system was evaluated on a breast cancer biopsy image set and two UCI machine learning datasets, the experimental results showed that the proposed method can achieve high classification reliability and accuracy with small rejection rate. Many computer aided diagnosis systems face the problem of imbalance data. The datasets used for diagnosis are often imbalanced as the number of normal cases is usually larger than the number of the disease cases. Classifiers that generalize over the data are not the most appropriate choice in such an imbalanced situation. To tackle this problem, a novel one-class classifier ensemble is proposed. The Kernel Principle Components are selected as the base classifiers in the ensemble; the base classifiers are trained by different types of image features respectively and then combined using a product combining rule. The proposed one-class classifier ensemble is also embedded into the cascade scheme to improve classification reliability and accuracy. The proposed method was evaluated on two medical image sets. Favorable results were obtained comparing with the state-of-art results
    • …
    corecore