2,701 research outputs found

    Cellular Automata Models of Road Traffic

    Full text link
    In this paper, we give an elaborate and understandable review of traffic cellular automata (TCA) models, which are a class of computationally efficient microscopic traffic flow models. TCA models arise from the physics discipline of statistical mechanics, having the goal of reproducing the correct macroscopic behaviour based on a minimal description of microscopic interactions. After giving an overview of cellular automata (CA) models, their background and physical setup, we introduce the mathematical notations, show how to perform measurements on a TCA model's lattice of cells, as well as how to convert these quantities into real-world units and vice versa. The majority of this paper then relays an extensive account of the behavioural aspects of several TCA models encountered in literature. Already, several reviews of TCA models exist, but none of them consider all the models exclusively from the behavioural point of view. In this respect, our overview fills this void, as it focusses on the behaviour of the TCA models, by means of time-space and phase-space diagrams, and histograms showing the distributions of vehicles' speeds, space, and time gaps. In the report, we subsequently give a concise overview of TCA models that are employed in a multi-lane setting, and some of the TCA models used to describe city traffic as a two-dimensional grid of cells, or as a road network with explicitly modelled intersections. The final part of the paper illustrates some of the more common analytical approximations to single-cell TCA models.Comment: Accepted for publication in "Physics Reports". A version of this paper with high-quality images can be found at: http://phdsven.dyns.cx (go to "Papers written"

    Extracting Boolean rules from CA patterns

    Get PDF
    A multiobjective genetic algorithm (GA) is introduced to identify both the neighborhood and the rule set in the form of a parsimonious Boolean expression for both one- and two-dimensional cellular automata (CA). Simulation results illustrate that the new algorithm performs well even when the patterns are corrupted by static and dynamic nois

    A Computation in a Cellular Automaton Collider Rule 110

    Full text link
    A cellular automaton collider is a finite state machine build of rings of one-dimensional cellular automata. We show how a computation can be performed on the collider by exploiting interactions between gliders (particles, localisations). The constructions proposed are based on universality of elementary cellular automaton rule 110, cyclic tag systems, supercolliders, and computing on rings.Comment: 39 pages, 32 figures, 3 table

    Neighborhood detection and rule selection from cellular automata patterns

    Get PDF
    Using genetic algorithms (GAs) to search for cellular automation (CA) rules from spatio-temporal patterns produced in CA evolution is usually complicated and time-consuming when both, the neighborhood structure and the local rule are searched simultaneously. The complexity of this problem motivates the development of a new search which separates the neighborhood detection from the GA search. In the paper, the neighborhood is determined by independently selecting terms from a large term set on the basis of the contribution each term makes to the next state of the cell to be updated. The GA search is then started with a considerably smaller set of candidate rules pre-defined by the detected neighhorhood. This approach is tested over a large set of one-dimensional (1-D) and two-dimensional (2-D) CA rules. Simulation results illustrate the efficiency of the new algorith

    Cellular automata as a tool for image processing

    Get PDF
    An overview is given on the use of cellular automata for image processing. We first consider the number of patterns that can exist in a neighbourhood, allowing for invariance to certain transformation. These patterns correspond to possible rules, and several schemes are described for automatically learning an appropriate rule set from training data. Two alternative schemes are given for coping with gray level (rather than binary) images without incurring a huge explosion in the number of possible rules. Finally, examples are provided of training various types of cellular automata with various rule identification schemes to perform several image processing tasks

    Evolutionary games on graphs

    Full text link
    Game theory is one of the key paradigms behind many scientific disciplines from biology to behavioral sciences to economics. In its evolutionary form and especially when the interacting agents are linked in a specific social network the underlying solution concepts and methods are very similar to those applied in non-equilibrium statistical physics. This review gives a tutorial-type overview of the field for physicists. The first three sections introduce the necessary background in classical and evolutionary game theory from the basic definitions to the most important results. The fourth section surveys the topological complications implied by non-mean-field-type social network structures in general. The last three sections discuss in detail the dynamic behavior of three prominent classes of models: the Prisoner's Dilemma, the Rock-Scissors-Paper game, and Competing Associations. The major theme of the review is in what sense and how the graph structure of interactions can modify and enrich the picture of long term behavioral patterns emerging in evolutionary games.Comment: Review, final version, 133 pages, 65 figure
    corecore