147 research outputs found

    On microelectronic self-learning cognitive chip systems

    Get PDF
    After a brief review of machine learning techniques and applications, this Ph.D. thesis examines several approaches for implementing machine learning architectures and algorithms into hardware within our laboratory. From this interdisciplinary background support, we have motivations for novel approaches that we intend to follow as an objective of innovative hardware implementations of dynamically self-reconfigurable logic for enhanced self-adaptive, self-(re)organizing and eventually self-assembling machine learning systems, while developing this new particular area of research. And after reviewing some relevant background of robotic control methods followed by most recent advanced cognitive controllers, this Ph.D. thesis suggests that amongst many well-known ways of designing operational technologies, the design methodologies of those leading-edge high-tech devices such as cognitive chips that may well lead to intelligent machines exhibiting conscious phenomena should crucially be restricted to extremely well defined constraints. Roboticists also need those as specifications to help decide upfront on otherwise infinitely free hardware/software design details. In addition and most importantly, we propose these specifications as methodological guidelines tightly related to ethics and the nowadays well-identified workings of the human body and of its psyche

    The Role Of The Interaction Network In The Emergence Of Diversity Of Behavior

    Get PDF
    Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)How can systems in which individuals' inner workings are very similar to each other, as neural networks or ant colonies, produce so many qualitatively different behaviors, giving rise to roles and specialization? In this work, we bring new perspectives to this question by focusing on the underlying network that defines how individuals in these systems interact. We applied a genetic algorithm to optimize rules and connections of cellular automata in order to solve the density classification task, a classical problem used to study emergent behaviors in decentralized computational systems. The networks used were all generated by the introduction of shortcuts in an originally regular topology, following the Small-world model. Even though all cells follow the exact same rules, we observed the existence of different classes of cells' behaviors in the best cellular automata found D most cells were responsible for memory and others for integration of information. Through the analysis of structural measures and patterns of connections (motifs) in successful cellular automata, we observed that the distribution of shortcuts between distant regions and the speed in which a cell can gather information from different parts of the system seem to be the main factors for the specialization we observed, demonstrating how heterogeneity in a network can create heterogeneity of behavior.122Conselho Nacional de Desenvolvimento Cientifico e Tecnologico [142118/2010-9]Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq

    From Evo to EvoDevo: Mapping and Adaptation in Artificial Development

    Get PDF

    Co-evolution of Structures and Controllers for Neubot Underwater Modular Robots

    Get PDF
    This article presents the first results of a project in underwater modular robotics, called Neubots. The goals of the projects are to explore, following Von Neumann’s ideas, potential mechanisms underlying self-organization and self-replication. We briefly explain the design features of the module units. We then present simulation results of the artificial co-evolution of body structures and neural controllers for locomotion. The neural controllers are inspired from the central pattern generators underlying locomotion in vertebrate animals. They are composed of multiple neural oscillators which are connected together by a specific type of coupling called synaptic spreading. The co-evolution of body and controller leads to interesting robots capable of efficient swimming. Interesting features of the neural controllers include the possibility to modulate the speed of locomotion by varying simple input signals, the robustness against perturbations, and the distributed nature of the controllers which makes them well suited for modular robotics

    Artificial Intelligence Applied to Conceptual Design. A Review of Its Use in Architecture

    Get PDF
    Financiado para publicación en acceso aberto: Universidade da Coruña/CISUG[Abstract] Conceptual architectural design is a complex process that draws on past experience and creativity to generate new designs. The application of artificial intelligence to this process should not be oriented toward finding a solution in a defined search space since the design requirements are not yet well defined in the conceptual stage. Instead, this process should be considered as an exploration of the requirements, as well as of possible solutions to meet those requirements. This work offers a tour of major research projects that apply artificial intelligence solutions to architectural conceptual design. We examine several approaches, but most of the work focuses on the use of evolutionary computing to perform these tasks. We note a marked increase in the number of papers in recent years, especially since 2015. Most employ evolutionary computing techniques, including cellular automata. Most initial approaches were oriented toward finding innovative and creative forms, while the latest research focuses on optimizing architectural form.This project was supported by the General Directorate of Culture, Education and University Management of Xunta de Galicia (Ref. ED431G/01, ED431D 2017/16), and the Spanish Ministry of Economy and Competitiveness via funding of the unique installation BIOCAI (UNLC08-1E-002, UNLC13-13-3503) and the European Regional Development Funds (FEDER)Xunta de Galicia; ED431G/01Xunta de Galicia; ED431D 2017/1
    • …
    corecore