4,259 research outputs found

    Adaptive Backstepping Controller Design for Stochastic Jump Systems

    Get PDF
    In this technical note, we improve the results in a paper by Shi et al., in which problems of stochastic stability and sliding mode control for a class of linear continuous-time systems with stochastic jumps were considered. However, the system considered is switching stochastically between different subsystems, the dynamics of the jump system can not stay on each sliding surface of subsystems forever, therefore, it is difficult to determine whether the closed-loop system is stochastically stable. In this technical note, the backstepping techniques are adopted to overcome the problem in a paper by Shi et al.. The resulting closed-loop system is bounded in probability. It has been shown that the adaptive control problem for the Markovian jump systems is solvable if a set of coupled linear matrix inequalities (LMIs) have solutions. A numerical example is given to show the potential of the proposed techniques

    On stabilization of bilinear uncertain time-delay stochastic systems with Markovian jumping parameters

    Get PDF
    Copyright [2002] IEEE. This material is posted here with permission of the IEEE. Such permission of the IEEE does not in any way imply IEEE endorsement of any of Brunel University's products or services. Internal or personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution must be obtained from the IEEE by writing to [email protected]. By choosing to view this document, you agree to all provisions of the copyright laws protecting it.In this paper, we investigate the stochastic stabilization problem for a class of bilinear continuous time-delay uncertain systems with Markovian jumping parameters. Specifically, the stochastic bilinear jump system under study involves unknown state time-delay, parameter uncertainties, and unknown nonlinear deterministic disturbances. The jumping parameters considered here form a continuous-time discrete-state homogeneous Markov process. The whole system may be regarded as a stochastic bilinear hybrid system that includes both time-evolving and event-driven mechanisms. Our attention is focused on the design of a robust state-feedback controller such that, for all admissible uncertainties as well as nonlinear disturbances, the closed-loop system is stochastically exponentially stable in the mean square, independent of the time delay. Sufficient conditions are established to guarantee the existence of desired robust controllers, which are given in terms of the solutions to a set of either linear matrix inequalities (LMIs), or coupled quadratic matrix inequalities. The developed theory is illustrated by numerical simulatio

    On Myopic Sensing for Multi-Channel Opportunistic Access: Structure, Optimality, and Performance

    Full text link
    We consider a multi-channel opportunistic communication system where the states of these channels evolve as independent and statistically identical Markov chains (the Gilbert-Elliot channel model). A user chooses one channel to sense and access in each slot and collects a reward determined by the state of the chosen channel. The problem is to design a sensing policy for channel selection to maximize the average reward, which can be formulated as a multi-arm restless bandit process. In this paper, we study the structure, optimality, and performance of the myopic sensing policy. We show that the myopic sensing policy has a simple robust structure that reduces channel selection to a round-robin procedure and obviates the need for knowing the channel transition probabilities. The optimality of this simple policy is established for the two-channel case and conjectured for the general case based on numerical results. The performance of the myopic sensing policy is analyzed, which, based on the optimality of myopic sensing, characterizes the maximum throughput of a multi-channel opportunistic communication system and its scaling behavior with respect to the number of channels. These results apply to cognitive radio networks, opportunistic transmission in fading environments, and resource-constrained jamming and anti-jamming.Comment: To appear in IEEE Transactions on Wireless Communications. This is a revised versio

    Robust Kalman tracking and smoothing with propagating and non-propagating outliers

    Full text link
    A common situation in filtering where classical Kalman filtering does not perform particularly well is tracking in the presence of propagating outliers. This calls for robustness understood in a distributional sense, i.e.; we enlarge the distribution assumptions made in the ideal model by suitable neighborhoods. Based on optimality results for distributional-robust Kalman filtering from Ruckdeschel[01,10], we propose new robust recursive filters and smoothers designed for this purpose as well as specialized versions for non-propagating outliers. We apply these procedures in the context of a GPS problem arising in the car industry. To better understand these filters, we study their behavior at stylized outlier patterns (for which they are not designed) and compare them to other approaches for the tracking problem. Finally, in a simulation study we discuss efficiency of our procedures in comparison to competitors.Comment: 27 pages, 12 figures, 2 table

    Convergence Analysis of Mixed Timescale Cross-Layer Stochastic Optimization

    Full text link
    This paper considers a cross-layer optimization problem driven by multi-timescale stochastic exogenous processes in wireless communication networks. Due to the hierarchical information structure in a wireless network, a mixed timescale stochastic iterative algorithm is proposed to track the time-varying optimal solution of the cross-layer optimization problem, where the variables are partitioned into short-term controls updated in a faster timescale, and long-term controls updated in a slower timescale. We focus on establishing a convergence analysis framework for such multi-timescale algorithms, which is difficult due to the timescale separation of the algorithm and the time-varying nature of the exogenous processes. To cope with this challenge, we model the algorithm dynamics using stochastic differential equations (SDEs) and show that the study of the algorithm convergence is equivalent to the study of the stochastic stability of a virtual stochastic dynamic system (VSDS). Leveraging the techniques of Lyapunov stability, we derive a sufficient condition for the algorithm stability and a tracking error bound in terms of the parameters of the multi-timescale exogenous processes. Based on these results, an adaptive compensation algorithm is proposed to enhance the tracking performance. Finally, we illustrate the framework by an application example in wireless heterogeneous network
    • …
    corecore