2,343 research outputs found

    Born to learn: The inspiration, progress, and future of evolved plastic artificial neural networks

    Get PDF
    Biological plastic neural networks are systems of extraordinary computational capabilities shaped by evolution, development, and lifetime learning. The interplay of these elements leads to the emergence of adaptive behavior and intelligence. Inspired by such intricate natural phenomena, Evolved Plastic Artificial Neural Networks (EPANNs) use simulated evolution in-silico to breed plastic neural networks with a large variety of dynamics, architectures, and plasticity rules: these artificial systems are composed of inputs, outputs, and plastic components that change in response to experiences in an environment. These systems may autonomously discover novel adaptive algorithms, and lead to hypotheses on the emergence of biological adaptation. EPANNs have seen considerable progress over the last two decades. Current scientific and technological advances in artificial neural networks are now setting the conditions for radically new approaches and results. In particular, the limitations of hand-designed networks could be overcome by more flexible and innovative solutions. This paper brings together a variety of inspiring ideas that define the field of EPANNs. The main methods and results are reviewed. Finally, new opportunities and developments are presented

    Evolvability signatures of generative encodings: beyond standard performance benchmarks

    Full text link
    Evolutionary robotics is a promising approach to autonomously synthesize machines with abilities that resemble those of animals, but the field suffers from a lack of strong foundations. In particular, evolutionary systems are currently assessed solely by the fitness score their evolved artifacts can achieve for a specific task, whereas such fitness-based comparisons provide limited insights about how the same system would evaluate on different tasks, and its adaptive capabilities to respond to changes in fitness (e.g., from damages to the machine, or in new situations). To counter these limitations, we introduce the concept of "evolvability signatures", which picture the post-mutation statistical distribution of both behavior diversity (how different are the robot behaviors after a mutation?) and fitness values (how different is the fitness after a mutation?). We tested the relevance of this concept by evolving controllers for hexapod robot locomotion using five different genotype-to-phenotype mappings (direct encoding, generative encoding of open-loop and closed-loop central pattern generators, generative encoding of neural networks, and single-unit pattern generators (SUPG)). We observed a predictive relationship between the evolvability signature of each encoding and the number of generations required by hexapods to adapt from incurred damages. Our study also reveals that, across the five investigated encodings, the SUPG scheme achieved the best evolvability signature, and was always foremost in recovering an effective gait following robot damages. Overall, our evolvability signatures neatly complement existing task-performance benchmarks, and pave the way for stronger foundations for research in evolutionary robotics.Comment: 24 pages with 12 figures in the main text, and 4 supplementary figures. Accepted at Information Sciences journal (in press). Supplemental videos are available online at, see http://goo.gl/uyY1R

    Balancing Selection Pressures, Multiple Objectives, and Neural Modularity to Coevolve Cooperative Agent Behavior

    Full text link
    Previous research using evolutionary computation in Multi-Agent Systems indicates that assigning fitness based on team vs.\ individual behavior has a strong impact on the ability of evolved teams of artificial agents to exhibit teamwork in challenging tasks. However, such research only made use of single-objective evolution. In contrast, when a multiobjective evolutionary algorithm is used, populations can be subject to individual-level objectives, team-level objectives, or combinations of the two. This paper explores the performance of cooperatively coevolved teams of agents controlled by artificial neural networks subject to these types of objectives. Specifically, predator agents are evolved to capture scripted prey agents in a torus-shaped grid world. Because of the tension between individual and team behaviors, multiple modes of behavior can be useful, and thus the effect of modular neural networks is also explored. Results demonstrate that fitness rewarding individual behavior is superior to fitness rewarding team behavior, despite being applied to a cooperative task. However, the use of networks with multiple modules allows predators to discover intelligent behavior, regardless of which type of objectives are used

    Reinforcement Learning for UAV Attitude Control

    Full text link
    Autopilot systems are typically composed of an "inner loop" providing stability and control, while an "outer loop" is responsible for mission-level objectives, e.g. way-point navigation. Autopilot systems for UAVs are predominately implemented using Proportional, Integral Derivative (PID) control systems, which have demonstrated exceptional performance in stable environments. However more sophisticated control is required to operate in unpredictable, and harsh environments. Intelligent flight control systems is an active area of research addressing limitations of PID control most recently through the use of reinforcement learning (RL) which has had success in other applications such as robotics. However previous work has focused primarily on using RL at the mission-level controller. In this work, we investigate the performance and accuracy of the inner control loop providing attitude control when using intelligent flight control systems trained with the state-of-the-art RL algorithms, Deep Deterministic Gradient Policy (DDGP), Trust Region Policy Optimization (TRPO) and Proximal Policy Optimization (PPO). To investigate these unknowns we first developed an open-source high-fidelity simulation environment to train a flight controller attitude control of a quadrotor through RL. We then use our environment to compare their performance to that of a PID controller to identify if using RL is appropriate in high-precision, time-critical flight control.Comment: 13 pages, 9 figure

    Computation Approaches for Continuous Reinforcement Learning Problems

    Get PDF
    Optimisation theory is at the heart of any control process, where we seek to control the behaviour of a system through a set of actions. Linear control problems have been extensively studied, and optimal control laws have been identified. But the world around us is highly non-linear and unpredictable. For these dynamic systems, which don’t possess the nice mathematical properties of the linear counterpart, the classic control theory breaks and other methods have to be employed. But nature thrives by optimising non-linear and over-complicated systems. Evolutionary Computing (EC) methods exploit nature’s way by imitating the evolution process and avoid to solve the control problem analytically. Reinforcement Learning (RL) from the other side regards the optimal control problem as a sequential one. In every discrete time step an action is applied. The transition of the system to a new state is accompanied by a sole numerical value, the “reward” that designate the quality of the control action. Even though the amount of feedback information is limited into a sole real number, the introduction of the Temporal Difference method made possible to have accurate predictions of the value-functions. This paved the way to optimise complex structures, like the Neural Networks, which are used to approximate the value functions. In this thesis we investigate the solution of continuous Reinforcement Learning control problems by EC methodologies. The accumulated reward of such problems throughout an episode suffices as information to formulate the required measure, fitness, in order to optimise a population of candidate solutions. Especially, we explore the limits of applicability of a specific branch of EC, that of Genetic Programming (GP). The evolving population in the GP case is comprised from individuals, which are immediately translated to mathematical functions, which can serve as a control law. The major contribution of this thesis is the proposed unification of these disparate Artificial Intelligence paradigms. The provided information from the systems are exploited by a step by step basis from the RL part of the proposed scheme and by an episodic basis from GP. This makes possible to augment the function set of the GP scheme with adaptable Neural Networks. In the quest to achieve stable behaviour of the RL part of the system a modification of the Actor-Critic algorithm has been implemented. Finally we successfully apply the GP method in multi-action control problems extending the spectrum of the problems that this method has been proved to solve. Also we investigated the capability of GP in relation to problems from the food industry. These type of problems exhibit also non-linearity and there is no definite model describing its behaviour

    Automatic synthesis of fuzzy systems: An evolutionary overview with a genetic programming perspective

    Get PDF
    Studies in Evolutionary Fuzzy Systems (EFSs) began in the 90s and have experienced a fast development since then, with applications to areas such as pattern recognition, curve‐fitting and regression, forecasting and control. An EFS results from the combination of a Fuzzy Inference System (FIS) with an Evolutionary Algorithm (EA). This relationship can be established for multiple purposes: fine‐tuning of FIS's parameters, selection of fuzzy rules, learning a rule base or membership functions from scratch, and so forth. Each facet of this relationship creates a strand in the literature, as membership function fine‐tuning, fuzzy rule‐based learning, and so forth and the purpose here is to outline some of what has been done in each aspect. Special focus is given to Genetic Programming‐based EFSs by providing a taxonomy of the main architectures available, as well as by pointing out the gaps that still prevail in the literature. The concluding remarks address some further topics of current research and trends, such as interpretability analysis, multiobjective optimization, and synthesis of a FIS through Evolving methods

    Design and Simulation of a Neuroevolutionary Controller for a Quadcopter Drone

    Get PDF
    The problem addressed in the present paper is the design of a controller based on an evolutionary neural network for autonomous flight in quadrotor systems. The controller's objective is to govern the quadcopter in such a way that it reaches a specific position, bearing on attitude limitations during flight and upon reaching a target. Given the complex nature of quadcopters, an appropriate neural network architecture and a training algorithm were designed to guide a quadcopter toward a target. The designed controller was implemented as a single multi-layer perceptron. On the basis of the quadcopter's current state, the developed neurocontroller produces the correct rotor speed values, optimized in terms of both attitude-limitation compliance and speed. The neural network training was completed using a custom evolutionary algorithm whose design put particular emphasis on the cost function's definition. The developed neurocontroller was tested in simulation to drive a quadcopter to autonomously follow a complex path. The obtained simulated results show that the neurocontroller manages to effortlessly follow several types of paths with adequate precision while maintaining low travel times

    On the evolution of homogeneous two-robot teams: clonal versus aclonal approaches

    Get PDF
    This study compares two different evolutionary approaches (clonal and aclonal) to the design of homogeneous two-robot teams (i.e. teams of morphologically identical agents with identical controllers) in a task that requires the agents to specialise to different roles. The two approaches differ mainly in the way teams are formed during evolution. In the clonal approach, a team is formed from a single genotype within one population of genotypes. In the aclonal approach, a team is formed from multiple genotypes within one population of genotypes. In both cases, the goal is the synthesis of individual generalist controllers capable of integrating role execution and role allocation mechanisms for a team of homogeneous robots. Our results diverge from those illustrated in a similar comparative study, which supports the superiority of the aclonal versus the clonal approach. We question this result and its theoretical underpinning, and we bring new empirical evidence showing that the clonal outperforms the aclonal approach in generating homogeneous teams required to dynamically specialise for the benefit of the team. The results of our study suggest that task-specific elements influence the evolutionary dynamics more than the genetic relatedness of the team members. We conclude that the appropriateness of the clonal approach for role allocation scenarios is mainly determined by the specificity of the collective task, including the evaluation function, rather than by the way in which the solutions are evaluated during evolution
    corecore