1,485 research outputs found

    Using machine learning methods to determine a typology of patients with HIV-HCV infection to be treated with antivirals

    Get PDF
    Several European countries have established criteria for prioritising initiation of treatment in patients infected with the hepatitis C virus (HCV) by grouping patients according to clinical characteristics. Based on neural network techniques, our objective was to identify those factors for HIV/HCV co-infected patients (to which clinicians have given careful consideration before treatment uptake) that have not being included among the prioritisation criteria. This study was based on the Spanish HERACLES cohort (NCT02511496) (April-September 2015, 2940 patients) and involved application of different neural network models with different basis functions (product-unit, sigmoid unit and radial basis function neural networks) for automatic classification of patients for treatment. An evolutionary algorithm was used to determine the architecture and estimate the coefficients of the model. This machine learning methodology found that radial basis neural networks provided a very simple model in terms of the number of patient characteristics to be considered by the classifier (in this case, six), returning a good overall classification accuracy of 0.767 and a minimum sensitivity (for the classification of the minority class, untreated patients) of 0.550. Finally, the area under the ROC curve was 0.802, which proved to be exceptional. The parsimony of the model makes it especially attractive, using just eight connections. The independent variable "recent PWID" is compulsory due to its importance. The simplicity of the model means that it is possible to analyse the relationship between patient characteristics and the probability of belonging to the treated group

    A New Large Scale SVM for Classification of Imbalanced Evolving Streams

    Get PDF
    Classification from imbalanced evolving streams possesses a combined challenge of class imbalance and concept drift (CI-CD). However, the state of imbalance is dynamic, a kind of virtual concept drift. The imbalanced distributions and concept drift hinder the online learner’s performance as a combined or individual problem. A weighted hybrid online oversampling approach,”weighted online oversampling large scale support vector machine (WOOLASVM),” is proposed in this work to address this combined problem. The WOOLASVM is an SVM active learning approach with new boundary weighing strategies such as (i) dynamically oversampling the current boundary and (ii) dynamic weighing of the cost parameter of the SVM objective function. Thus at any time step, WOOLASVM maintains balanced class distributions so that the CI-CD problem does not hinder the online learner performance. Over extensive experiments on synthetic and real-world streams with the static and dynamic state of imbalance, the WOOLASVM exhibits better online classification performances than other state-of-the-art methods

    HTMLPhish: Enabling Phishing Web Page Detection by Applying Deep Learning Techniques on HTML Analysis

    Get PDF
    Recently, the development and implementation of phishing attacks require little technical skills and costs. This uprising has led to an ever-growing number of phishing attacks on the World Wide Web. Consequently, proactive techniques to fight phishing attacks have become extremely necessary. In this paper, we propose HTMLPhish, a deep learning based datadriven end-to-end automatic phishing web page classification approach. Specifically, HTMLPhish receives the content of the HTML document of a web page and employs Convolutional Neural Networks (CNNs) to learn the semantic dependencies in the textual contents of the HTML. The CNNs learn appropriate feature representations from the HTML document embeddings without extensive manual feature engineering. Furthermore, our proposed approach of the concatenation of the word and character embeddings allows our model to manage new features and ensure easy extrapolation to test data. We conduct comprehensive experiments on a dataset of more than 50,000 HTML documents that provides a distribution of phishing to benign web pages obtainable in the real-world that yields over 93% Accuracy and True Positive Rate. Also, HTMLPhish is a completely language-independent and client-side strategy which can, therefore, conduct web page phishing detection regardless of the textual language

    PWIDB: A framework for learning to classify imbalanced data streams with incremental data re-balancing technique

    Get PDF
    The performance of classification algorithms with highly imbalanced streaming data depends upon efficient balancing strategy. Some techniques of balancing strategy have been applied using static batch data to resolve the class imbalance problem, which is difficult if applied for massive data streams. In this paper, a new Piece-Wise Incremental Data re-Balancing (PWIDB) framework is proposed. The PWIDB framework combines automated balancing techniques using Racing Algorithm (RA) and incremental rebalancing technique. RA is an active learning approach capable of classifying imbalanced data and can provide a way to select an appropriate re-balancing technique with imbalanced data. In this paper, we have extended the capability of RA for handling imbalanced data streams in the proposed PWIDB framework. The PWIDB accumulates previous knowledge with increments of re-balanced data and captures the concept of the imbalanced instances. The PWIDB is an incremental streaming batch framework, which is suitable for learning with streaming imbalanced data. We compared the performance of PWIDB with a well-known FLORA technique. Experimental results show that the PWIDB framework exhibits an improved and stable performance compared to FLORA and accumulative re-balancing techniques

    A reduced labeled samples (RLS) framework for classification of imbalanced concept-drifting streaming data.

    Get PDF
    Stream processing frameworks are designed to process the streaming data that arrives in time. An example of such data is stream of emails that a user receives every day. Most of the real world data streams are also imbalanced as is in the stream of emails, which contains few spam emails compared to a lot of legitimate emails. The classification of the imbalanced data stream is challenging due to the several reasons: First of all, data streams are huge and they can not be stored in the memory for one time processing. Second, if the data is imbalanced, the accuracy of the majority class mostly dominates the results. Third, data streams are changing over time, and that causes degradation in the model performance. Hence the model should get updated when such changes are detected. Finally, the true labels of the all samples are not available immediately after classification, and only a fraction of the data is possible to get labeled in real world applications. That is because the labeling is expensive and time consuming. In this thesis, a framework for modeling the streaming data when the classes of the data samples are imbalanced is proposed. This framework is called Reduced Labeled Samples (RLS). RLS is a chunk based learning framework that builds a model using partially labeled data stream, when the characteristics of the data change. In RLS, a fraction of the samples are labeled and are used in modeling, and the performance is not significantly different from that of the 100% labeling. RLS maintains an ensemble of classifiers to boost the performance. RLS uses the information from labeled data in a supervised fashion, and also is extended to use the information from unlabeled data in a semi supervised fashion. RLS addresses both binary and multi class partially labeled data stream and the results show the basis of RLS is effective even in the context of multi class classification problems. Overall, the RLS is shown to be an effective framework for processing imbalanced and partially labeled data streams

    Incremental learning of concept drift from imbalanced data

    Get PDF
    Learning data sampled from a nonstationary distribution has been shown to be a very challenging problem in machine learning, because the joint probability distribution between the data and classes evolve over time. Thus learners must adapt their knowledge base, including their structure or parameters, to remain as strong predictors. This phenomenon of learning from an evolving data source is akin to learning how to play a game while the rules of the game are changed, and it is traditionally referred to as learning concept drift. Climate data, financial data, epidemiological data, spam detection are examples of applications that give rise to concept drift problems. An additional challenge arises when the classes to be learned are not represented (approximately) equally in the training data, as most machine learning algorithms work well only when the class distributions are balanced. However, rare categories are commonly faced in real-world applications, which leads to skewed or imbalanced datasets. Fraud detection, rare disease diagnosis, anomaly detection are examples of applications that feature imbalanced datasets, where data from category are severely underrepresented. Concept drift and class imbalance are traditionally addressed separately in machine learning, yet data streams can experience both phenomena. This work introduces Learn++.NIE (nonstationary & imbalanced environments) and Learn++.CDS (concept drift with SMOTE) as two new members of the Learn++ family of incremental learning algorithms that explicitly and simultaneously address the aforementioned phenomena. The former addresses concept drift and class imbalance through modified bagging-based sampling and replacing a class independent error weighting mechanism - which normally favors majority class - with a set of measures that emphasize good predictive accuracy on all classes. The latter integrates Learn++.NSE, an algorithm for concept drift, with the synthetic sampling method known as SMOTE, to cope with class imbalance. This research also includes a thorough evaluation of Learn++.CDS and Learn++.NIE on several real and synthetic datasets and on several figures of merit, showing that both algorithms are able to learn in some of the most difficult learning environments
    corecore