399,641 research outputs found

    A Review of Meta-level Learning in the Context of Multi-component, Multi-level Evolving Prediction Systems.

    Get PDF
    The exponential growth of volume, variety and velocity of data is raising the need for investigations of automated or semi-automated ways to extract useful patterns from the data. It requires deep expert knowledge and extensive computational resources to find the most appropriate mapping of learning methods for a given problem. It becomes a challenge in the presence of numerous configurations of learning algorithms on massive amounts of data. So there is a need for an intelligent recommendation engine that can advise what is the best learning algorithm for a dataset. The techniques that are commonly used by experts are based on a trial and error approach evaluating and comparing a number of possible solutions against each other, using their prior experience on a specific domain, etc. The trial and error approach combined with the expert’s prior knowledge, though computationally and time expensive, have been often shown to work for stationary problems where the processing is usually performed off-line. However, this approach would not normally be feasible to apply on non-stationary problems where streams of data are continuously arriving. Furthermore, in a non-stationary environment the manual analysis of data and testing of various methods every time when there is a change in the underlying data distribution would be very difficult or simply infeasible. In that scenario and within an on-line predictive system, there are several tasks where Meta-learning can be used to effectively facilitate best recommendations including: 1) pre processing steps, 2) learning algorithms or their combination, 3) adaptivity mechanisms and their parameters, 4) recurring concept extraction, and 5) concept drift detection. However, while conceptually very attractive and promising, the Meta-learning leads to several challenges with the appropriate representation of the problem at a meta-level being one of the key ones. The goal of this review and our research is, therefore, to investigate Meta learning in general and the associated challenges in the context of automating the building, deployment and adaptation of multi-level and multi-component predictive system that evolve over time

    From Terminology Extraction to Terminology Validation: An Approach Adapted to Log Files

    Get PDF
    International audienceLog files generated by computational systems contain relevant and essential information. In some application areas like the design of integrated circuits, log files generated by design tools contain information which can be used in management information systems to evaluate the final products. However, the complexity of such textual data raises some challenges concerning the extraction of information from log files. Log files are usually multi-source, multi-format, and have a heterogeneous and evolving structure. Moreover, they usually do not respect natural language grammar and structures even though they are written in English. Classical methods of information extraction such as terminology extraction methods are particularly irrelevant to this context. In this paper, we introduce our approach Exterlog to extract terminology from log files. We detail how it deals with the specific features of such textual data. The performance is emphasized by favoring the most relevant terms of the domain based on a scoring function which uses a Web and context based measure. The experiments show that Exterlog is a well-adapted approach for terminology extraction from log files

    Implementation of context-aware workflows with Multi-agent Systems

    Get PDF
    Systems in Ambient Intelligence (AmI) need to manage workflows that represent users’ activities. These workflows can be quite complex, as they may involve multiple participants, both physical and computational, playing different roles. Their execution implies monitoring the development of the activities in the environment, and taking the necessary actions for them and the workflow to reach a certain end. The context-aware approach supports the development of these applications to cope with event processing and regarding information issues. Modeling the actors in these context-aware workflows, where complex decisions and interactions must be considered, can be achieved with multi-agent systems. Agents are autonomous entities with sophisticated and flexible behaviors, which are able to adapt to complex and evolving environments, and to collaborate to reach common goals. This work presents architectural patterns to integrate agents on top of an existing context-aware architecture. This allows an additional abstraction layer on top of context-aware systems, where knowledge management is performed by agents.This approach improves the flexibility of AmI systems and facilitates their design. A case study on guiding users in buildings to their meetings illustrates this approach

    A Generic Multi-Layer Architecture Based on ROS-JADE Integration for Autonomous Transport Vehicles

    Get PDF
    The design and operation of manufacturing systems is evolving to adapt to different challenges. One of the most important is the reconfiguration of the manufacturing process in response to context changes (e.g., faulty equipment or urgent orders, among others). In this sense, the Autonomous Transport Vehicle (ATV) plays a key role in building more flexible and decentralized manufacturing systems. Nowadays, robotic frameworks (RFs) are used for developing robotic systems such as ATVs, but they focus on the control of the robotic system itself. However, social abilities are required for performing intelligent interaction (peer-to-peer negotiation and decision-making) among the different and heterogeneous Cyber Physical Production Systems (such as machines, transport systems and other equipment present in the factory) to achieve manufacturing reconfiguration. This work contributes a generic multi-layer architecture that integrates a RF with a Multi-Agent System (MAS) to provide social abilities to ATVs. This architecture has been implemented on ROS and JADE, the most widespread RF and MAS framework, respectively. We believe this to be the first work that addresses the intelligent interaction of transportation systems for flexible manufacturing environments in a holistic form.This work was financed by MINECO/FEDER, UE (grant number DPI2015-68602-R) and by UPV/EHU (grant number PPG17/56)

    Saving the Fundaments: Impact of a Military Coup on the Sudan Health System

    Get PDF
    Military coups are not uncommon occurrences, particularly in developing nations where political systems might be less firmly entrenched or still evolving. Developments of this nature can often have profound implications for the affected nation’s healthcare systems, both in the immediate aftermath and over the longer term. This paper narrates some notable consequences of political instability on the national health system, particularly placing them in the context of the military coup in October 2021 – emphasizing the context behind the political turbulence, its acute and direct consequences, and the possible long-term legacies of political shocks on the already overwhelmed health system. As a descriptive piece, this narrative does not only look at the impact of the military coup on hospitals, but considers the implications for the healthcare system as defined by the WHO, with particular emphasis on the impact of the coup on health funding from multi-laterals, service delivery, human resource availability, and supply chains in Sudan
    • …
    corecore