4,163 research outputs found

    Explorations in Evolutionary Design of Online Auction Market Mechanisms

    No full text
    This paper describes the use of a genetic algorithm (GA) to find optimal parameter-values for trading agents that operate in virtual online auction “e-marketplaces”, where the rules of those marketplaces are also under simultaneous control of the GA. The aim is to use the GA to automatically design new mechanisms for agent-based e-marketplaces that are more efficient than online markets designed by (or populated by) humans. The space of possible auction-types explored by the GA includes the Continuous Double Auction (CDA) mechanism (as used in most of the world’s financial exchanges), and also two purely one-sided mechanisms. Surprisingly, the GA did not always settle on the CDA as an optimum. Instead, novel hybrid auction mechanisms were evolved, which are unlike any existing market mechanisms. In this paper we show that, when the market supply and demand schedules undergo sudden “shock” changes partway through the evaluation process, two-sided hybrid market mechanisms can evolve which may be unlike any human-designed auction and yet may also be significantly more efficient than any human designed market mechanism

    Evolutionary Optimization of ZIP60: A Controlled Explosion in Hyperspace

    No full text
    The “ZIP” adaptive trading algorithm has been demonstrated to out-perform human traders in experimental studies of continuous double auction (CDA) markets. The original ZIP algorithm requires the values of eight control parameters to be set correctly. A new extension of the ZIP algorithm, called ZIP60, requires the values of 60 parameters to be set correctly. ZIP60 is shown here to produce significantly better results than the original ZIP (called “ZIP8” hereafter), for negligable additional computational costs. A genetic algorithm (GA) is used to search the 60-dimensional ZIP60 parameter space, and it finds parameter vectors that yield ZIP60 traders with mean scores significantly better than those of ZIP8s. This paper shows that the optimizing evolutionary search works best when the GA itself controls the dimensionality of the search-space, so that the search commences in an 8-d space and thereafter the dimensionality of the search-space is gradually increased by the GA until it is exploring a 60-d space. Furthermore, the results from ZIP60 cast some doubt on prior ZIP8 results concerning the evolution of new ‘hybrid’ auction mechanisms that appeared to be better than the CDA

    An Investigation Report on Auction Mechanism Design

    Full text link
    Auctions are markets with strict regulations governing the information available to traders in the market and the possible actions they can take. Since well designed auctions achieve desirable economic outcomes, they have been widely used in solving real-world optimization problems, and in structuring stock or futures exchanges. Auctions also provide a very valuable testing-ground for economic theory, and they play an important role in computer-based control systems. Auction mechanism design aims to manipulate the rules of an auction in order to achieve specific goals. Economists traditionally use mathematical methods, mainly game theory, to analyze auctions and design new auction forms. However, due to the high complexity of auctions, the mathematical models are typically simplified to obtain results, and this makes it difficult to apply results derived from such models to market environments in the real world. As a result, researchers are turning to empirical approaches. This report aims to survey the theoretical and empirical approaches to designing auction mechanisms and trading strategies with more weights on empirical ones, and build the foundation for further research in the field

    The effects of periodic and continuous market environments on the performance of trading agents

    No full text
    Simulation experiments are conducted on simple continuous double auction (CDA) markets based on the experimental economics work of Vernon Smith. CDA models within experimental economics usually consist of a sequence of discrete trading periods or “days”, with allocations of stock and currency replenished at the start of each day, a situation we call “periodic” replenishment. In our experiments we look at both periodic and continuous-replenishment versions of the CDA. In this we build on the work of Cliff and Preist (2001) with human subjects, but we replace human traders with Zero Intelligence Plus (ZIP) trading agents, a minimal algorithm that can produce equilibrating market behaviour in CDA models. Our results indicate that continuous-replenishment (CR) CDA markets are similar to conventional periodic CDA markets in their ability to show equilibration dynamics. Secondly we show that although both models produce the same behaviour of price formation, they are different playing fields, as periodic markets are more efficient over time than their continuous counterparts. We also find, however, that the volume of trade in periodic CDA markets is concentrated in the early period of each trading day, and the market is in this sense inefficient. We look at whether ZIP agents require different parameters for optimal behaviour in each market type, and find that this is indeed the case. Overall, our conclusions mirror earlier findings on the robustness of the CDA, but we stress that a CR-CDA marketplace equilibrates in a different way to a periodic one

    The virtues and vices of equilibrium and the future of financial economics

    Get PDF
    The use of equilibrium models in economics springs from the desire for parsimonious models of economic phenomena that take human reasoning into account. This approach has been the cornerstone of modern economic theory. We explain why this is so, extolling the virtues of equilibrium theory; then we present a critique and describe why this approach is inherently limited, and why economics needs to move in new directions if it is to continue to make progress. We stress that this shouldn't be a question of dogma, but should be resolved empirically. There are situations where equilibrium models provide useful predictions and there are situations where they can never provide useful predictions. There are also many situations where the jury is still out, i.e., where so far they fail to provide a good description of the world, but where proper extensions might change this. Our goal is to convince the skeptics that equilibrium models can be useful, but also to make traditional economists more aware of the limitations of equilibrium models. We sketch some alternative approaches and discuss why they should play an important role in future research in economics.Comment: 68 pages, one figur

    The Strategic Exploitation of Limited Information and Opportunity in Networked Markets

    No full text
    This paper studies the effect of constraining interactions within a market. A model is analysed in which boundedly rational agents trade with and gather information from their neighbours within a trade network. It is demonstrated that a trader’s ability to profit and to identify the equilibrium price is positively correlated with its degree of connectivity within the market. Where traders differ in their number of potential trading partners, well-connected traders are found to benefit from aggressive trading behaviour.Where information propagation is constrained by the topology of the trade network, connectedness affects the nature of the strategies employed

    Parrondo Strategies for Artificial Traders

    Full text link
    On markets with receding prices, artificial noise traders may consider alternatives to buy-and-hold. By simulating variations of the Parrondo strategy, using real data from the Swedish stock market, we produce first indications of a buy-low-sell-random Parrondo variation outperforming buy-and-hold. Subject to our assumptions, buy-low-sell-random also outperforms the traditional value and trend investor strategies. We measure the success of the Parrondo variations not only through their performance compared to other kinds of strategies, but also relative to varying levels of perfect information, received through messages within a multi-agent system of artificial traders.Comment: 10 pages, 4 figure

    The Virtues and Vices of Equilibrium and the Future of Financial Economics

    Get PDF
    The use of equilibrium models in economics springs from the desire for parsimonious models of economic phenomena that take human reasoning into account. This approach has been the cornerstone of modern economic theory. We explain why this is so, extolling the virtues of equilibrium theory; then we present a critique and describe why this approach is inherently limited, and why economics needs to move in new directions if it is to continue to make progress. We stress that this shouldn’t be a question of dogma, but should be resolved empirically. There are situations where equilibrium models provide useful predictions and there are situations where they can never provide useful predictions. There are also many situations where the jury is still out, i.e., where so far they fail to provide a good description of the world, but where proper extensions might change this. Our goal is to convince the skeptics that equilibrium models can be useful, but also to make traditional economists more aware of the limitations of equilibrium models. We sketch some alternative approaches and discuss why they should play an important role in future research in economics.Equilibrium, Rational expectations, Efficiency, Arbitrage, Bounded rationality, Power laws, Disequilibrium, Zero intelligence, Market ecology, Agent based modeling
    • 

    corecore