7,547 research outputs found

    A least-squares implicit RBF-FD closest point method and applications to PDEs on moving surfaces

    Full text link
    The closest point method (Ruuth and Merriman, J. Comput. Phys. 227(3):1943-1961, [2008]) is an embedding method developed to solve a variety of partial differential equations (PDEs) on smooth surfaces, using a closest point representation of the surface and standard Cartesian grid methods in the embedding space. Recently, a closest point method with explicit time-stepping was proposed that uses finite differences derived from radial basis functions (RBF-FD). Here, we propose a least-squares implicit formulation of the closest point method to impose the constant-along-normal extension of the solution on the surface into the embedding space. Our proposed method is particularly flexible with respect to the choice of the computational grid in the embedding space. In particular, we may compute over a computational tube that contains problematic nodes. This fact enables us to combine the proposed method with the grid based particle method (Leung and Zhao, J. Comput. Phys. 228(8):2993-3024, [2009]) to obtain a numerical method for approximating PDEs on moving surfaces. We present a number of examples to illustrate the numerical convergence properties of our proposed method. Experiments for advection-diffusion equations and Cahn-Hilliard equations that are strongly coupled to the velocity of the surface are also presented

    The Semi Implicit Gradient Augmented Level Set Method

    Full text link
    Here a semi-implicit formulation of the gradient augmented level set method is presented. By tracking both the level set and it's gradient accurate subgrid information is provided,leading to highly accurate descriptions of a moving interface. The result is a hybrid Lagrangian-Eulerian method that may be easily applied in two or three dimensions. The new approach allows for the investigation of interfaces evolving by mean curvature and by the intrinsic Laplacian of the curvature. In this work the algorithm, convergence and accuracy results are presented. Several numerical experiments in both two and three dimensions demonstrate the stability of the scheme.Comment: 19 Pages, 14 Figure

    A new ghost cell/level set method for moving boundary problems:application to tumor growth

    Get PDF
    In this paper, we present a ghost cell/level set method for the evolution of interfaces whose normal velocity depend upon the solutions of linear and nonlinear quasi-steady reaction-diffusion equations with curvature-dependent boundary conditions. Our technique includes a ghost cell method that accurately discretizes normal derivative jump boundary conditions without smearing jumps in the tangential derivative; a new iterative method for solving linear and nonlinear quasi-steady reaction-diffusion equations; an adaptive discretization to compute the curvature and normal vectors; and a new discrete approximation to the Heaviside function. We present numerical examples that demonstrate better than 1.5-order convergence for problems where traditional ghost cell methods either fail to converge or attain at best sub-linear accuracy. We apply our techniques to a model of tumor growth in complex, heterogeneous tissues that consists of a nonlinear nutrient equation and a pressure equation with geometry-dependent jump boundary conditions. We simulate the growth of glioblastoma (an aggressive brain tumor) into a large, 1 cm square of brain tissue that includes heterogeneous nutrient delivery and varied biomechanical characteristics (white matter, gray matter, cerebrospinal fluid, and bone), and we observe growth morphologies that are highly dependent upon the variations of the tissue characteristics—an effect observed in real tumor growth

    Trace Finite Element Methods for PDEs on Surfaces

    Full text link
    In this paper we consider a class of unfitted finite element methods for discretization of partial differential equations on surfaces. In this class of methods known as the Trace Finite Element Method (TraceFEM), restrictions or traces of background surface-independent finite element functions are used to approximate the solution of a PDE on a surface. We treat equations on steady and time-dependent (evolving) surfaces. Higher order TraceFEM is explained in detail. We review the error analysis and algebraic properties of the method. The paper navigates through the known variants of the TraceFEM and the literature on the subject

    Divergence-Free Adaptive Mesh Refinement for Magnetohydrodynamics

    Get PDF
    In this paper we present a full-fledged scheme for the second order accurate, divergence-free evolution of vector fields on an adaptive mesh refinement (AMR) hierarchy. We focus here on adaptive mesh MHD. The scheme is based on making a significant advance in the divergence-free reconstruction of vector fields. In that sense, it complements the earlier work of Balsara and Spicer (1999) where we discussed the divergence-free time-update of vector fields which satisfy Stoke's law type evolution equations. Our advance in divergence-free reconstruction of vector fields is such that it reduces to the total variation diminishing (TVD) property for one-dimensional evolution and yet goes beyond it in multiple dimensions. Divergence-free restriction is also discussed. An electric field correction strategy is presented for use on AMR meshes. The electric field correction strategy helps preserve the divergence-free evolution of the magnetic field even when the time steps are sub-cycled on refined meshes. The above-mentioned innovations have been implemented in Balsara's RIEMANN framework for parallel, self-adaptive computational astrophysics which supports both non-relativistic and relativistic MHD. Several rigorous, three dimensional AMR-MHD test problems with strong discontinuities have been run with the RIEMANN framework showing that the strategy works very well.Comment: J.C.P., figures of reduced qualit

    An isogeometric finite element formulation for phase transitions on deforming surfaces

    Get PDF
    This paper presents a general theory and isogeometric finite element implementation for studying mass conserving phase transitions on deforming surfaces. The mathematical problem is governed by two coupled fourth-order nonlinear partial differential equations (PDEs) that live on an evolving two-dimensional manifold. For the phase transitions, the PDE is the Cahn-Hilliard equation for curved surfaces, which can be derived from surface mass balance in the framework of irreversible thermodynamics. For the surface deformation, the PDE is the (vector-valued) Kirchhoff-Love thin shell equation. Both PDEs can be efficiently discretized using C1C^1-continuous interpolations without derivative degrees-of-freedom (dofs). Structured NURBS and unstructured spline spaces with pointwise C1C^1-continuity are utilized for these interpolations. The resulting finite element formulation is discretized in time by the generalized-α\alpha scheme with adaptive time-stepping, and it is fully linearized within a monolithic Newton-Raphson approach. A curvilinear surface parameterization is used throughout the formulation to admit general surface shapes and deformations. The behavior of the coupled system is illustrated by several numerical examples exhibiting phase transitions on deforming spheres, tori and double-tori.Comment: fixed typos, extended literature review, added clarifying notes to the text, added supplementary movie file

    Development of an Analytic Nodal Diffusion Solver in Multigroups for 3D Reactor Cores with Rectangular or Hexagonal Assemblies.

    Get PDF
    More accurate modelling of physical phenomena involved in present and future nuclear reactors requires a multi-scale and multi-physics approach. This challenge can be accomplished by the coupling of best-estimate core-physics, thermal-hydraulics and multi-physics solvers. In order to make viable that coupling, the current trends in reactor simulations are along the development of a new generation of tools based on user-friendly, modular, easily linkable, faster and more accurate codes to be integrated in common platforms. These premises are in the origin of the NURESIM Integrated Project within the 6th European Framework Program, which is envisaged to provide the initial step towards a Common European Standard Software Platform for nuclear reactors simulations. In the frame of this project and to reach the above-mentioned goals, a 3-D multigroup nodal solver for neutron diffusion calculations called ANDES (Analytic Nodal Diffusion Equation Solver) has been developed and tested in-depth in this Thesis. ANDES solves the steady-state and time-dependent neutron diffusion equation in threedimensions and any number of energy groups, utilizing the Analytic Coarse-Mesh Finite-Difference (ACMFD) scheme to yield the nodal coupling equations. It can be applied to both Cartesian and triangular-Z geometries, so that simulations of LWR as well as VVER, HTR and fast reactors can be performed. The solver has been implemented in a fully encapsulated way, enabling it as a module to be readily integrated in other codes and platforms. In fact, it can be used either as a stand-alone nodal code or as a solver to accelerate the convergence of whole core pin-by-pin code systems. Verification of performance has shown that ANDES is a code with high order definition for whole core realistic nodal simulations. In this paper, the methodology developed and involved in ANDES is presented
    • …
    corecore