66 research outputs found

    Review of Nature-Inspired Forecast Combination Techniques

    Get PDF
    Effective and efficient planning in various areas can be significantly supported by forecasting a variable like an economy growth rate or product demand numbers for a future point in time. More than one forecast for the same variable is often available, leading to the question whether one should choose one of the single models or combine several of them to obtain a forecast with improved accuracy. In the almost 40 years of research in the area of forecast combination, an impressive amount of work has been done. This paper reviews forecast combination techniques that are nonlinear and have in some way been inspired by nature

    Formation and Development of Self-Organizing Intelligent Technologies of Inductive Modeling

    No full text
    The purpose of this paper is analysing the background of the GMDH invention by Ivakhnenko and the evolution of model self-organization ideas, methods and tools during the halfcentury historical period of successful development of the inductive modeling methodology.Метою дослідження є аналіз передумов винайдення МГУА О.Г. Івахненком та еволюції ідей, методів та інструментів самоорганізації моделей протягом піввікового історичного періоду успішного розвитку методології індуктивного моделювання.Целью работы является анализ эволюции идей, методов и инструментов самоорганизации моделей в течение полувекового исторического периода успешного развития методологии индуктивного моделирования. Проанализированы основные предпосылки создания академиком А.Г. Ивахненко метода группового учета аргументов (МГУА), исследуется эволюция его научных идей и взглядов, а также основные достижения в развитии МГУА в период 1968–1997 годов. Охарактеризован вклад исследователей разных стран в модификацию и применение МГУА. Приведены результаты дальнейших разработок методов и инструментов индуктивного моделирования в отделе Информационных технологий индуктивного моделирования и указаны наиболее перспективные направления исследований в этой области

    Forecasting and Forecast Combination in Airline Revenue Management Applications

    Get PDF
    Predicting a variable for a future point in time helps planning for unknown future situations and is common practice in many areas such as economics, finance, manufacturing, weather and natural sciences. This paper investigates and compares approaches to forecasting and forecast combination that can be applied to service industry in general and to airline industry in particular. Furthermore, possibilities to include additionally available data like passenger-based information are discussed

    An Extensive Analysis of Machine Learning Based Boosting Algorithms for Software Maintainability Prediction

    Get PDF
    Software Maintainability is an indispensable factor to acclaim for the quality of particular software. It describes the ease to perform several maintenance activities to make a software adaptable to the modified environment. The availability & growing popularity of a wide range of Machine Learning (ML) algorithms for data analysis further provides the motivation for predicting this maintainability. However, an extensive analysis & comparison of various ML based Boosting Algorithms (BAs) for Software Maintainability Prediction (SMP) has not been made yet. Therefore, the current study analyzes and compares five different BAs, i.e., AdaBoost, GBM, XGB, LightGBM, and CatBoost, for SMP using open-source datasets. Performance of the propounded prediction models has been evaluated using Root Mean Square Error (RMSE), Mean Magnitude of Relative Error (MMRE), Pred(0.25), Pred(0.30), & Pred(0.75) as prediction accuracy measures followed by a non-parametric statistical test and a post hoc analysis to account for the differences in the performances of various BAs. Based on the residual errors obtained, it was observed that GBM is the best performer, followed by LightGBM for RMSE, whereas, in the case of MMRE, XGB performed the best for six out of the seven datasets, i.e., for 85.71% of the total datasets by providing minimum values for MMRE, ranging from 0.90 to 3.82. Further, on applying the statistical test and on performing the post hoc analysis, it was found that significant differences exist in the performance of different BAs and, XGB and CatBoost outperformed all other BAs for MMRE. Lastly, a comparison of BAs with four other ML algorithms has also been made to bring out BAs superiority over other algorithms. This study would open new doors for the software developers for carrying out comparatively more precise predictions well in time and hence reduce the overall maintenance costs

    Interval type-2 intuitionistic fuzzy logic system for time series and identification problems - a comparative study

    Get PDF
    This paper proposes a sliding mode control-based learning of interval type-2 intuitionistic fuzzy logic system for time series and identification problems. Until now, derivative-based algorithms such as gradient descent back propagation, extended Kalman filter, decoupled extended Kalman filter and hybrid method of decoupled extended Kalman filter and gradient descent methods have been utilized for the optimization of the parameters of interval type-2 intuitionistic fuzzy logic systems. The proposed model is based on a Takagi-Sugeno-Kang inference system. The evaluations of the model are conducted using both real world and artificially generated datasets. Analysis of results reveals that the proposed interval type-2 intuitionistic fuzzy logic system trained with sliding mode control learning algorithm (derivative-free) do outperforms some existing models in terms of the test root mean squared error while competing favourable with other models in the literature. Moreover, the proposed model may stand as a good choice for real time applications where running time is paramount compared to the derivative-based models

    Metaheuristic design of feedforward neural networks: a review of two decades of research

    Get PDF
    Over the past two decades, the feedforward neural network (FNN) optimization has been a key interest among the researchers and practitioners of multiple disciplines. The FNN optimization is often viewed from the various perspectives: the optimization of weights, network architecture, activation nodes, learning parameters, learning environment, etc. Researchers adopted such different viewpoints mainly to improve the FNN's generalization ability. The gradient-descent algorithm such as backpropagation has been widely applied to optimize the FNNs. Its success is evident from the FNN's application to numerous real-world problems. However, due to the limitations of the gradient-based optimization methods, the metaheuristic algorithms including the evolutionary algorithms, swarm intelligence, etc., are still being widely explored by the researchers aiming to obtain generalized FNN for a given problem. This article attempts to summarize a broad spectrum of FNN optimization methodologies including conventional and metaheuristic approaches. This article also tries to connect various research directions emerged out of the FNN optimization practices, such as evolving neural network (NN), cooperative coevolution NN, complex-valued NN, deep learning, extreme learning machine, quantum NN, etc. Additionally, it provides interesting research challenges for future research to cope-up with the present information processing era

    Applications of machine learning approaches in aerodynamic aspects of axial flow compressors: A review

    Get PDF
    A compressor is one of the key components of a gas turbine engine and its performance and characteristics significantly affect the overall performance of the engine. Axial flow compressors are one of the most conventional types of compressors and are widely used in turbine engines for large-scale power generation. Intelligent techniques are useful for numerical simulation, characterization of axial compressors, and predicting their performance. The present work reviews studies applying different intelligent methods for performance forecasting and modeling different aerodynamic aspects of axial compressors. Corresponding to the outcomes of the considered research works, it can be expressed that by using these methods, axial compressors can be characterized properly with acceptable exactness. In addition, these techniques are useful for performance prediction of the compressors. The accuracy and performance of these methods is impacted by several elements, specifically the employed method and applied input variables. Finally, some suggestions are made for future studies in the field
    corecore