5,757 research outputs found

    A Multi-Gene Genetic Programming Application for Predicting Students Failure at School

    Full text link
    Several efforts to predict student failure rate (SFR) at school accurately still remains a core problem area faced by many in the educational sector. The procedure for forecasting SFR are rigid and most often times require data scaling or conversion into binary form such as is the case of the logistic model which may lead to lose of information and effect size attenuation. Also, the high number of factors, incomplete and unbalanced dataset, and black boxing issues as in Artificial Neural Networks and Fuzzy logic systems exposes the need for more efficient tools. Currently the application of Genetic Programming (GP) holds great promises and has produced tremendous positive results in different sectors. In this regard, this study developed GPSFARPS, a software application to provide a robust solution to the prediction of SFR using an evolutionary algorithm known as multi-gene genetic programming. The approach is validated by feeding a testing data set to the evolved GP models. Result obtained from GPSFARPS simulations show its unique ability to evolve a suitable failure rate expression with a fast convergence at 30 generations from a maximum specified generation of 500. The multi-gene system was also able to minimize the evolved model expression and accurately predict student failure rate using a subset of the original expressionComment: 14 pages, 9 figures, Journal paper. arXiv admin note: text overlap with arXiv:1403.0623 by other author

    AI Solutions for MDS: Artificial Intelligence Techniques for Misuse Detection and Localisation in Telecommunication Environments

    Get PDF
    This report considers the application of Articial Intelligence (AI) techniques to the problem of misuse detection and misuse localisation within telecommunications environments. A broad survey of techniques is provided, that covers inter alia rule based systems, model-based systems, case based reasoning, pattern matching, clustering and feature extraction, articial neural networks, genetic algorithms, arti cial immune systems, agent based systems, data mining and a variety of hybrid approaches. The report then considers the central issue of event correlation, that is at the heart of many misuse detection and localisation systems. The notion of being able to infer misuse by the correlation of individual temporally distributed events within a multiple data stream environment is explored, and a range of techniques, covering model based approaches, `programmed' AI and machine learning paradigms. It is found that, in general, correlation is best achieved via rule based approaches, but that these suffer from a number of drawbacks, such as the difculty of developing and maintaining an appropriate knowledge base, and the lack of ability to generalise from known misuses to new unseen misuses. Two distinct approaches are evident. One attempts to encode knowledge of known misuses, typically within rules, and use this to screen events. This approach cannot generally detect misuses for which it has not been programmed, i.e. it is prone to issuing false negatives. The other attempts to `learn' the features of event patterns that constitute normal behaviour, and, by observing patterns that do not match expected behaviour, detect when a misuse has occurred. This approach is prone to issuing false positives, i.e. inferring misuse from innocent patterns of behaviour that the system was not trained to recognise. Contemporary approaches are seen to favour hybridisation, often combining detection or localisation mechanisms for both abnormal and normal behaviour, the former to capture known cases of misuse, the latter to capture unknown cases. In some systems, these mechanisms even work together to update each other to increase detection rates and lower false positive rates. It is concluded that hybridisation offers the most promising future direction, but that a rule or state based component is likely to remain, being the most natural approach to the correlation of complex events. The challenge, then, is to mitigate the weaknesses of canonical programmed systems such that learning, generalisation and adaptation are more readily facilitated

    ANTIDS: Self-Organized Ant-based Clustering Model for Intrusion Detection System

    Full text link
    Security of computers and the networks that connect them is increasingly becoming of great significance. Computer security is defined as the protection of computing systems against threats to confidentiality, integrity, and availability. There are two types of intruders: the external intruders who are unauthorized users of the machines they attack, and internal intruders, who have permission to access the system with some restrictions. Due to the fact that it is more and more improbable to a system administrator to recognize and manually intervene to stop an attack, there is an increasing recognition that ID systems should have a lot to earn on following its basic principles on the behavior of complex natural systems, namely in what refers to self-organization, allowing for a real distributed and collective perception of this phenomena. With that aim in mind, the present work presents a self-organized ant colony based intrusion detection system (ANTIDS) to detect intrusions in a network infrastructure. The performance is compared among conventional soft computing paradigms like Decision Trees, Support Vector Machines and Linear Genetic Programming to model fast, online and efficient intrusion detection systems.Comment: 13 pages, 3 figures, Swarm Intelligence and Patterns (SIP)- special track at WSTST 2005, Muroran, JAPA

    Deriving Models for Software Project Effort Estimation By Means of Genetic Programming

    Get PDF
    Software engineering, effort estimation, genetic programming, symbolic regression. This paper presents the application of a computational intelligence methodology in effort estimation for software projects. Namely, we apply a genetic programming model for symbolic regression; aiming to produce mathematical expressions that (1) are highly accurate and (2) can be used for estimating the development effort by revealing relationships between the project’s features and the required work. We selected to investigate the effectiveness of this methodology into two software engineering domains. The system was proved able to generate models in the form of handy mathematical expressions that are more accurate than those found in literature.
    • …
    corecore