5 research outputs found

    Exploring Evolved Multicellular Life Histories in a Open-Ended Digital Evolution System

    Full text link
    Evolutionary transitions occur when previously-independent replicating entities unite to form more complex individuals. Such transitions have profoundly shaped natural evolutionary history and occur in two forms: fraternal transitions involve lower-level entities that are kin (e.g., transitions to multicellularity or to eusocial colonies), while egalitarian transitions involve unrelated individuals (e.g., the origins of mitochondria). The necessary conditions and evolutionary mechanisms for these transitions to arise continue to be fruitful targets of scientific interest. Here, we examine a range of fraternal transitions in populations of open-ended self-replicating computer programs. These digital cells were allowed to form and replicate kin groups by selectively adjoining or expelling daughter cells. The capability to recognize kin-group membership enabled preferential communication and cooperation between cells. We repeatedly observed group-level traits that are characteristic of a fraternal transition. These included reproductive division of labor, resource sharing within kin groups, resource investment in offspring groups, asymmetrical behaviors mediated by messaging, morphological patterning, and adaptive apoptosis. We report eight case studies from replicates where transitions occurred and explore the diverse range of adaptive evolved multicellular strategies

    Matchmaker, Matchmaker, Make Me a Match: Geometric, Variational, and Evolutionary Implications of Criteria for Tag Affinity

    Full text link
    Genetic programming and artificial life systems commonly employ tag-matching schemes to determine interactions between model components. However, the implications of criteria used to determine affinity between tags with respect to constraints on emergent connectivity, canalization of changes to connectivity under mutation, and evolutionary dynamics have not been considered. We highlight differences between tag-matching criteria with respect to geometric constraint and variation generated under mutation. We find that tag-matching criteria can influence the rate of adaptive evolution and the quality of evolved solutions. Better understanding of the geometric, variational, and evolutionary properties of tag-matching criteria will facilitate more effective incorporation of tag matching into genetic programming and artificial life systems. By showing that tag-matching criteria influence connectivity patterns and evolutionary dynamics, our findings also raise fundamental questions about the properties of tag-matching systems in nature

    Reachability Analysis for Lexicase Selection via Community Assembly Graphs

    Full text link
    Fitness landscapes have historically been a powerful tool for analyzing the search space explored by evolutionary algorithms. In particular, they facilitate understanding how easily reachable an optimal solution is from a given starting point. However, simple fitness landscapes are inappropriate for analyzing the search space seen by selection schemes like lexicase selection in which the outcome of selection depends heavily on the current contents of the population (i.e. selection schemes with complex ecological dynamics). Here, we propose borrowing a tool from ecology to solve this problem: community assembly graphs. We demonstrate a simple proof-of-concept for this approach on an NK Landscape where we have perfect information. We then demonstrate that this approach can be successfully applied to a complex genetic programming problem. While further research is necessary to understand how to best use this tool, we believe it will be a valuable addition to our toolkit and facilitate analyses that were previously impossible

    Best-Effort Communication Improves Performance and Scales Robustly on Conventional Hardware

    Full text link
    Here, we test the performance and scalability of fully-asynchronous, best-effort communication on existing, commercially-available HPC hardware. A first set of experiments tested whether best-effort communication strategies can benefit performance compared to the traditional perfect communication model. At high CPU counts, best-effort communication improved both the number of computational steps executed per unit time and the solution quality achieved within a fixed-duration run window. Under the best-effort model, characterizing the distribution of quality of service across processing components and over time is critical to understanding the actual computation being performed. Additionally, a complete picture of scalability under the best-effort model requires analysis of how such quality of service fares at scale. To answer these questions, we designed and measured a suite of quality of service metrics: simulation update period, message latency, message delivery failure rate, and message delivery coagulation. Under a lower communication-intensivity benchmark parameterization, we found that median values for all quality of service metrics were stable when scaling from 64 to 256 process. Under maximal communication intensivity, we found only minor -- and, in most cases, nil -- degradation in median quality of service. In an additional set of experiments, we tested the effect of an apparently faulty compute node on performance and quality of service. Despite extreme quality of service degradation among that node and its clique, median performance and quality of service remained stable
    corecore