1,136 research outputs found

    Robotic Musicianship - Musical Interactions Between Humans and Machines

    Get PDF

    Evolutionary perspectives in computer music

    Get PDF
    This paper presents a brief overview of music evolution - western and non-western music - from its genesis to serialism and the Darmstadt school. Some mathematical aspects of music are then presented and confronted with music as a form of art. Some questions follow: are these two (very) distinct aspects compatible? Can computers be of real help in automatic composition? Evolutionaty Algorithms (EAs) - Genetic Algorithms (GAs), Genetic Programming (GP), Particle Swarm Optimization (PSO) and Ant Colony Optimization (ACO) - are then introduced and some results of GAs and GPs application to music generation are analysed. Variable fitness functions and PSO application seems a promising way to explore. However, what output should be envisaged? Should we expect that computer music sounds as human music, or should we look for a totally different way to explore and listen? How far can go computer creativity and in what direction?N/

    Interconnected musical networks : bringing expression and thoughtfulness to collaborative group playing

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, School of Architecture and Planning, Program in Media Arts and Sciences, 2003.Includes bibliographical references (p. 211-219).(cont.) In order to addressee the latter challenge I have decided to employ the digital network--a promising candidate for bringing a unique added value to the musical experience of collaborative group playing. I have chosen to address both challenges by embedding cognitive and educational concepts in newly designed interconnect instruments and applications, which led to the development of a number of such Interconnected Musical Networks (IMNs)--live performance systems that allow players to influence, share, and shape each other's music in real-time. In my thesis I discuss the concepts, motivations, and aesthetics of IMNs and review a number of historical and current technological landmarks that led the way to the development of the field. I then suggest a comprehensive theoretical framework for artistic interdependency, based on which I developed a set of instruments and activities in an effort to turn IMNs into an expressive and intuitive art form that provides meaningful learning experiences, engaging collaborative interactions, and worthy music.Music today is more ubiquitous, accessible, and democratized than ever. Thanks to technologies such as high-end home studios, audio compression, and digital distribution, music now surrounds us in everyday life, almost every piece of music is a few minutes of download away, and almost any western musician, novice or expert, can compose, perform and distribute their music directly to their listeners from their home studios. But at the same time these technologies lead to some concerning social effects on the culture of consuming and creating music. Although music is available for more people, in more locations, and for longer periods of time, most listeners experience it in an incidental, unengaged, or utilitarian manner. On the creation side, home studios promote private and isolated practice of music making where hardly any musical instruments or even musicians are needed, and where the value of live group interaction is marginal. My thesis work attempts to use technology to address these same concerning effects that it had created by developing tools and applications that would address two main challenges: 1. Facilitating engaged and thoughtful as well as intuitive and expressive musical experiences for novices and children 2. Enhancing the inherent social attributes of music making by connecting to and intensifying the roots of music as a collaborative socialritual. My approach for addressing the first challenge is to study and model music cognition and education theories and to design algorithms that would bridge between the thoughtful and the expressive, allowing novices and children an access to meaningful and engaging musical experiences.by Gil Weinberg.Ph.D

    Adaptive and learning-based formation control of swarm robots

    Get PDF
    Autonomous aerial and wheeled mobile robots play a major role in tasks such as search and rescue, transportation, monitoring, and inspection. However, these operations are faced with a few open challenges including robust autonomy, and adaptive coordination based on the environment and operating conditions, particularly in swarm robots with limited communication and perception capabilities. Furthermore, the computational complexity increases exponentially with the number of robots in the swarm. This thesis examines two different aspects of the formation control problem. On the one hand, we investigate how formation could be performed by swarm robots with limited communication and perception (e.g., Crazyflie nano quadrotor). On the other hand, we explore human-swarm interaction (HSI) and different shared-control mechanisms between human and swarm robots (e.g., BristleBot) for artistic creation. In particular, we combine bio-inspired (i.e., flocking, foraging) techniques with learning-based control strategies (using artificial neural networks) for adaptive control of multi- robots. We first review how learning-based control and networked dynamical systems can be used to assign distributed and decentralized policies to individual robots such that the desired formation emerges from their collective behavior. We proceed by presenting a novel flocking control for UAV swarm using deep reinforcement learning. We formulate the flocking formation problem as a partially observable Markov decision process (POMDP), and consider a leader-follower configuration, where consensus among all UAVs is used to train a shared control policy, and each UAV performs actions based on the local information it collects. In addition, to avoid collision among UAVs and guarantee flocking and navigation, a reward function is added with the global flocking maintenance, mutual reward, and a collision penalty. We adapt deep deterministic policy gradient (DDPG) with centralized training and decentralized execution to obtain the flocking control policy using actor-critic networks and a global state space matrix. In the context of swarm robotics in arts, we investigate how the formation paradigm can serve as an interaction modality for artists to aesthetically utilize swarms. In particular, we explore particle swarm optimization (PSO) and random walk to control the communication between a team of robots with swarming behavior for musical creation

    Art unlimited: an investigation into contemporary digital arts and the free software movement.

    Get PDF
    Computing technology has not only significantly shaped many of the contemporary artistic disciplines, it has also given birth to many new and exciting practices. Modest, low cost hardware enabled artists to manipulate real-time multimedia data and coordinate vast amounts of hardware devices, whilst high bandwidth Internet connections has allowed them to communicate and distribute their work rapidly. For this reason, art practices in the digital domain have become highly decentralized. It is therefore not surprising that the rise of free and open source software (FLOSS) has been warmly welcomed and adopted by an increasing number of practitioners. The technical advantages in free software allows them to create works of art with greater freedom and flexibility. Its open and collaborative ideology, on the other hand, further embraces the increasingly autonomous and distributed characteristics in the artistic community. This thesis aims to examine the impact of free and open source software in the context of contemporary digital arts. It will look at the current climate of both digital arts and the FLOSS movement, attempting to rationalize the implications of such a phenomena. It will also provide concrete examples of ongoing activities in FLOSS digital arts, as an evidence and documentation of its development to date. Lastly, the practical work in this research will offer a first hand insight into developing a FLOSS project within the given context

    Art unlimited : an investigation into contemporary digital arts and the free software movement

    Get PDF
    Computing technology has not only significantly shaped many of the contemporary artistic disciplines, it has also given birth to many new and exciting practices. Modest, low cost hardware enabled artists to manipulate real-time multimedia data and coordinate vast amounts of hardware devices, whilst high bandwidth Internet connections has allowed them to communicate and distribute their work rapidly. For this reason, art practices in the digital domain have become highly decentralized. It is therefore not surprising that the rise of free and open source software (FLOSS) has been warmly welcomed and adopted by an increasing number of practitioners. The technical advantages in free software allows them to create works of art with greater freedom and flexibility. Its open and collaborative ideology, on the other hand, further embraces the increasingly autonomous and distributed characteristics in the artistic community. This thesis aims to examine the impact of free and open source software in the context of contemporary digital arts. It will look at the current climate of both digital arts and the FLOSS movement, attempting to rationalize the implications of such a phenomena. It will also provide concrete examples of ongoing activities in FLOSS digital arts, as an evidence and documentation of its development to date. Lastly, the practical work in this research will offer a first hand insight into developing a FLOSS project within the given context.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    SOUND SYNTHESIS WITH CELLULAR AUTOMATA

    Get PDF
    This thesis reports on new music technology research which investigates the use of cellular automata (CA) for the digital synthesis of dynamic sounds. The research addresses the problem of the sound design limitations of synthesis techniques based on CA. These limitations fundamentally stem from the unpredictable and autonomous nature of these computational models. Therefore, the aim of this thesis is to develop a sound synthesis technique based on CA capable of allowing a sound design process. A critical analysis of previous research in this area will be presented in order to justify that this problem has not been previously solved. Also, it will be discussed why this problem is worthwhile to solve. In order to achieve such aim, a novel approach is proposed which considers the output of CA as digital signals and uses DSP procedures to analyse them. This approach opens a large variety of possibilities for better understanding the self-organization process of CA with a view to identifying not only mapping possibilities for making the synthesis of sounds possible, but also control possibilities which enable a sound design process. As a result of this approach, this thesis presents a technique called Histogram Mapping Synthesis (HMS), which is based on the statistical analysis of CA evolutions by histogram measurements. HMS will be studied with four different automatons, and a considerable number of control mechanisms will be presented. These will show that HMS enables a reasonable sound design process. With these control mechanisms it is possible to design and produce in a predictable and controllable manner a variety of timbres. Some of these timbres are imitations of sounds produced by acoustic means and others are novel. All the sounds obtained present dynamic features and many of them, including some of those that are novel, retain important characteristics of sounds produced by acoustic means
    • …
    corecore