777 research outputs found

    Mid-sagittal plane detection for advanced physiological measurements in brain scans

    Get PDF
    Objective: The process of diagnosing many neurodegenerative diseases, such as Parkinson's and progressive supranuclear palsy, involves the study of brain magnetic resonance imaging (MRI) scans in order to identify and locate morphological markers that can highlight the health status of the subject. A fundamental step in the pre-processing and analysis of MRI scans is the identification of the mid-sagittal plane, which corresponds to the mid-brain and allows a coordinate reference system for the whole MRI scan set. Approach: To improve the identification of the mid-sagittal plane we have developed an algorithm in Matlab® based on the k-means clustering function. The results have been compared with the evaluation of four experts who manually identified the mid-sagittal plane and whose performances have been combined with a cognitive decisional algorithm in order to define a gold standard. Main results: The comparison provided a mean percentage error of 1.84%. To further refine the automatic procedure we trained a machine learning system using the results from the proposed algorithm and the gold standard. We tested this machine learning system and obtained results comparable to medical raters with a mean absolute error of 1.86 slices. Significance: The system is promising and could be directly incorporated into broader diagnostic support systems

    blob loss: instance imbalance aware loss functions for semantic segmentation

    Full text link
    Deep convolutional neural networks have proven to be remarkably effective in semantic segmentation tasks. Most popular loss functions were introduced targeting improved volumetric scores, such as the Sorensen Dice coefficient. By design, DSC can tackle class imbalance; however, it does not recognize instance imbalance within a class. As a result, a large foreground instance can dominate minor instances and still produce a satisfactory Sorensen Dice coefficient. Nevertheless, missing out on instances will lead to poor detection performance. This represents a critical issue in applications such as disease progression monitoring. For example, it is imperative to locate and surveil small-scale lesions in the follow-up of multiple sclerosis patients. We propose a novel family of loss functions, nicknamed blob loss, primarily aimed at maximizing instance-level detection metrics, such as F1 score and sensitivity. Blob loss is designed for semantic segmentation problems in which the instances are the connected components within a class. We extensively evaluate a DSC-based blob loss in five complex 3D semantic segmentation tasks featuring pronounced instance heterogeneity in terms of texture and morphology. Compared to soft Dice loss, we achieve 5 percent improvement for MS lesions, 3 percent improvement for liver tumor, and an average 2 percent improvement for Microscopy segmentation tasks considering F1 score

    blob loss: instance imbalance aware loss functions for semantic segmentation

    Full text link
    Deep convolutional neural networks have proven to be remarkably effective in semantic segmentation tasks. Most popular loss functions were introduced targeting improved volumetric scores, such as the Sorensen Dice coefficient. By design, DSC can tackle class imbalance; however, it does not recognize instance imbalance within a class. As a result, a large foreground instance can dominate minor instances and still produce a satisfactory Sorensen Dice coefficient. Nevertheless, missing out on instances will lead to poor detection performance. This represents a critical issue in applications such as disease progression monitoring. For example, it is imperative to locate and surveil small-scale lesions in the follow-up of multiple sclerosis patients. We propose a novel family of loss functions, nicknamed blob loss, primarily aimed at maximizing instance-level detection metrics, such as F1 score and sensitivity. Blob loss is designed for semantic segmentation problems in which the instances are the connected components within a class. We extensively evaluate a DSC-based blob loss in five complex 3D semantic segmentation tasks featuring pronounced instance heterogeneity in terms of texture and morphology. Compared to soft Dice loss, we achieve 5 percent improvement for MS lesions, 3 percent improvement for liver tumor, and an average 2 percent improvement for Microscopy segmentation tasks considering F1 score.Comment: 23 pages, 7 figures // corrected one mistake where it said beta instead of alpha in the tex

    Improving longitudinal spinal cord atrophy measurements for clinical trials in multiple sclerosis by using the generalised boundary shift integral (GBSI)

    Get PDF
    Spinal cord atrophy is a common and clinically relevant feature of multiple sclerosis (MS), and can be used to monitor disease progression and as an outcome measure in clinical trials. Spinal cord atrophy is conventionally estimated with segmentation-based methods (e.g., cross-sectional spinal cord area (CSA)), where spinal cord change is calculated indirectly by numerical difference between timepoints. In this thesis, I validated the generalised boundary shift integral (GBSI), as the first registration-based method for longitudinal spinal cord atrophy measurement. The GBSI registers the baseline and follow-up spinal cord scans in a common half-way space, to directly determine atrophy on the cord edges. First, on a test dataset (9 MS patients and 9 controls), I have found that GBSI presented with lower random measurement error, than CSA, reflected by lower standard deviation, coefficient of variation and median absolute deviation. Then, on multi-centre, multi-manufacturer, and multi–field‐strength scans (282 MS patients and 82 controls), I confirmed that GBSI provided lower measurement variability in all MS subtypes and controls, than CSA, resulting into better separation between MS patients and controls, improved statistical power, and reduced sample size estimates. Finally, on a phase 2 clinical trial (220 primary-progressive MS patients), I demonstrated that spinal cord atrophy measurements on GBSI could be obtained from brain scans, considering their quality and association with corresponding spinal cord MRI-derived measurements. Not least, 1-year spinal cord atrophy measurements on GBSI, but not CSA, were associated with upper and lower limb motor function. In conclusion, spinal cord atrophy on the GBSI had higher measurement precision and stronger clinical correlates, than the segmentation method, and could be derived from high-quality brain acquisitions. Longitudinal spinal cord atrophy on GBSI could become a gold standard for clinical trials including spinal cord atrophy as an outcome measure, but should remain a secondary outcome measure, until further advancements increase the ease of acquisition and processing

    A review on a deep learning perspective in brain cancer classification

    Get PDF
    AWorld Health Organization (WHO) Feb 2018 report has recently shown that mortality rate due to brain or central nervous system (CNS) cancer is the highest in the Asian continent. It is of critical importance that cancer be detected earlier so that many of these lives can be saved. Cancer grading is an important aspect for targeted therapy. As cancer diagnosis is highly invasive, time consuming and expensive, there is an immediate requirement to develop a non-invasive, cost-effective and efficient tools for brain cancer characterization and grade estimation. Brain scans using magnetic resonance imaging (MRI), computed tomography (CT), as well as other imaging modalities, are fast and safer methods for tumor detection. In this paper, we tried to summarize the pathophysiology of brain cancer, imaging modalities of brain cancer and automatic computer assisted methods for brain cancer characterization in a machine and deep learning paradigm. Another objective of this paper is to find the current issues in existing engineering methods and also project a future paradigm. Further, we have highlighted the relationship between brain cancer and other brain disorders like stroke, Alzheimer’s, Parkinson’s, andWilson’s disease, leukoriaosis, and other neurological disorders in the context of machine learning and the deep learning paradigm

    Neurologic Diagnostics in 2035: The Neurology Future Forecasting Series

    Get PDF
    Innovations and advances in technologies over the past few years have yielded faster and wider diagnostic applications to patients with neurologic diseases. This article focuses on the foreseeable developments of the diagnostic tools available to the neurologist in the next 15 years. Clinical judgment is and will remain the cornerstone of the diagnostic process, assisted by novel technologies, such as artificial intelligence and machine learning. Future neurologists must be educated to develop, cultivate, and rely on their clinical skills, while becoming familiar with novel, often complex, assistive technologies

    Un modelo de atención visual para la detección de regiones de interés en imágenes radiológicas

    Get PDF
    La detección, segmentación y cuantificación de lesiones de esclerosis múltiple (MS) en imágenes de resonancia magnética (MRI) ha sido un área de estudio muy activa en las ´últimas dos décadas. Esto es debido la necesidad de correlacionar estas medidas con la efectividad de los tratamientos farmacológicos. Muchos métodos han sido desarrollados y la mayoría no son específicos para los diferentes tipos de lesiones, es decir que no pueden distinguir entre lesiones agudas y crónicas. Los médicos radiólogos por su parte son capaces de distinguir entre diferentes niveles de la enfermedad haciendo uso de las imágenes de resonancia magnética de diferentes tipos. La principal motivación de este trabajo es la de emular mediante un modelo computacional la percepción visual del radiólogo, haciendo uso de los principios fisiológicos del sistema visual. De esta manera logramos detectar satisfactoriamente las lesiones de esclerosis múltiple en imágenes de resonancia magnética del cerebro. Este tipo de análisis nos permite estudiar y mejorar el estudio de las redes neuronales al poder introducir información a priori.Abstract. The detection, segmentation and quantification of multiple sclerosis (MS) lesions on magnetic resonance images (MRI) has been a very active field for the last two decades because of the urge to correlate these measures with the e↵ectiveness of pharmacological treatment. A myriad of methods has been developed and most of these are non specific for the type of lesions, e.g. they do not di↵erentiate between acute and chronic lesions. On the other hand, radiologists are able to distinguish between several stages of the disease on di↵erent types of MRI images. The main motivation of the work presented here is to computationally emulate the visual perception of the radiologist by using modeling principles of the neuronal centers along the visual system. By using this approach we were able to successfully detect multiple sclerosis lesions in brain MRI. This type of approach allows us to study and improve the analysis of brain networks by introducing a priori informationMaestrí

    Automated brain lesion segmentation in magnetic resonance images

    Get PDF
    In this thesis, we investigate the potential of automation in brain lesion segmentation in magnetic resonance images. We first develop a novel supervised method, which segments regions in magnetic resonance images using gated recurrent units, provided training data with pixel-wise annotations on what to segment is available. We improve on this method using the latest technical advances in the field of machine learning and insights on possible weaknesses of our method, and adapt it specifically for the task of lesion segmentation in the brain. We show the feasibility of our approach on multiple public benchmarks, consistently reaching positions at the top of the list of competing methods. Adapting our problem successfully to the problem of landmark localization, we show the generalizability of the approach. Moving away from large training cohorts with manual segmentations to data where it is only known that a certain pathology is present, we propose a weakly-supervised segmentation approach. Given a set of images with known pathology of a certain kind and a healthy reference set, our formulation can segment the difference of the two data distributions. Lastly, we show how information from already existing lesion maps can be extracted in a meaningful way by connecting lesions across time in longitudinal studies. We hence present a full tool set for the automated processing of lesions in magnetic resonance images
    corecore