1,362 research outputs found

    Evolving Large-Scale Data Stream Analytics based on Scalable PANFIS

    Full text link
    Many distributed machine learning frameworks have recently been built to speed up the large-scale data learning process. However, most distributed machine learning used in these frameworks still uses an offline algorithm model which cannot cope with the data stream problems. In fact, large-scale data are mostly generated by the non-stationary data stream where its pattern evolves over time. To address this problem, we propose a novel Evolving Large-scale Data Stream Analytics framework based on a Scalable Parsimonious Network based on Fuzzy Inference System (Scalable PANFIS), where the PANFIS evolving algorithm is distributed over the worker nodes in the cloud to learn large-scale data stream. Scalable PANFIS framework incorporates the active learning (AL) strategy and two model fusion methods. The AL accelerates the distributed learning process to generate an initial evolving large-scale data stream model (initial model), whereas the two model fusion methods aggregate an initial model to generate the final model. The final model represents the update of current large-scale data knowledge which can be used to infer future data. Extensive experiments on this framework are validated by measuring the accuracy and running time of four combinations of Scalable PANFIS and other Spark-based built in algorithms. The results indicate that Scalable PANFIS with AL improves the training time to be almost two times faster than Scalable PANFIS without AL. The results also show both rule merging and the voting mechanisms yield similar accuracy in general among Scalable PANFIS algorithms and they are generally better than Spark-based algorithms. In terms of running time, the Scalable PANFIS training time outperforms all Spark-based algorithms when classifying numerous benchmark datasets.Comment: 20 pages, 5 figure

    Unleashing the Power of Hashtags in Tweet Analytics with Distributed Framework on Apache Storm

    Full text link
    Twitter is a popular social network platform where users can interact and post texts of up to 280 characters called tweets. Hashtags, hyperlinked words in tweets, have increasingly become crucial for tweet retrieval and search. Using hashtags for tweet topic classification is a challenging problem because of context dependent among words, slangs, abbreviation and emoticons in a short tweet along with evolving use of hashtags. Since Twitter generates millions of tweets daily, tweet analytics is a fundamental problem of Big data stream that often requires a real-time Distributed processing. This paper proposes a distributed online approach to tweet topic classification with hashtags. Being implemented on Apache Storm, a distributed real time framework, our approach incrementally identifies and updates a set of strong predictors in the Na\"ive Bayes model for classifying each incoming tweet instance. Preliminary experiments show promising results with up to 97% accuracy and 37% increase in throughput on eight processors.Comment: IEEE International Conference on Big Data 201

    Random Forests for Big Data

    Get PDF
    Big Data is one of the major challenges of statistical science and has numerous consequences from algorithmic and theoretical viewpoints. Big Data always involve massive data but they also often include online data and data heterogeneity. Recently some statistical methods have been adapted to process Big Data, like linear regression models, clustering methods and bootstrapping schemes. Based on decision trees combined with aggregation and bootstrap ideas, random forests were introduced by Breiman in 2001. They are a powerful nonparametric statistical method allowing to consider in a single and versatile framework regression problems, as well as two-class and multi-class classification problems. Focusing on classification problems, this paper proposes a selective review of available proposals that deal with scaling random forests to Big Data problems. These proposals rely on parallel environments or on online adaptations of random forests. We also describe how related quantities -- such as out-of-bag error and variable importance -- are addressed in these methods. Then, we formulate various remarks for random forests in the Big Data context. Finally, we experiment five variants on two massive datasets (15 and 120 millions of observations), a simulated one as well as real world data. One variant relies on subsampling while three others are related to parallel implementations of random forests and involve either various adaptations of bootstrap to Big Data or to "divide-and-conquer" approaches. The fifth variant relates on online learning of random forests. These numerical experiments lead to highlight the relative performance of the different variants, as well as some of their limitations

    Data Mining Applications in Big Data

    Get PDF
    Data mining is a process of extracting hidden, unknown, but potentially useful information from massive data. Big Data has great impacts on scientific discoveries and value creation. This paper introduces methods in data mining and technologies in Big Data. Challenges of data mining and data mining with big data are discussed. Some technology progress of data mining and data mining with big data are also presented
    • …
    corecore