1,279 research outputs found

    Biomaker CA: a Biome Maker project using Cellular Automata

    Full text link
    We introduce Biomaker CA: a Biome Maker project using Cellular Automata (CA). In Biomaker CA, morphogenesis is a first class citizen and small seeds need to grow into plant-like organisms to survive in a nutrient starved environment and eventually reproduce with variation so that a biome survives for long timelines. We simulate complex biomes by means of CA rules in 2D grids and parallelize all of its computation on GPUs through the Python JAX framework. We show how this project allows for several different kinds of environments and laws of 'physics', alongside different model architectures and mutation strategies. We further analyze some configurations to show how plant agents can grow, survive, reproduce, and evolve, forming stable and unstable biomes. We then demonstrate how one can meta-evolve models to survive in a harsh environment either through end-to-end meta-evolution or by a more surgical and efficient approach, called Petri dish meta-evolution. Finally, we show how to perform interactive evolution, where the user decides how to evolve a plant model interactively and then deploys it in a larger environment. We open source Biomaker CA at: https://tinyurl.com/2x8yu34s .Comment: 20 pages, 23 figures. For code base, see https://tinyurl.com/2x8yu34

    How Turing parasites expand the computational landscape of digital life

    Full text link
    Why are living systems complex? Why does the biosphere contain living beings with complexity features beyond those of the simplest replicators? What kind of evolutionary pressures result in more complex life forms? These are key questions that pervade the problem of how complexity arises in evolution. One particular way of tackling this is grounded in an algorithmic description of life: living organisms can be seen as systems that extract and process information from their surroundings in order to reduce uncertainty. Here we take this computational approach using a simple bit string model of coevolving agents and their parasites. While agents try to predict their worlds, parasites do the same with their hosts. The result of this process is that, in order to escape their parasites, the host agents expand their computational complexity despite the cost of maintaining it. This, in turn, is followed by increasingly complex parasitic counterparts. Such arms races display several qualitative phases, from monotonous to punctuated evolution or even ecological collapse. Our minimal model illustrates the relevance of parasites in providing an active mechanism for expanding living complexity beyond simple replicators, suggesting that parasitic agents are likely to be a major evolutionary driver for biological complexity.Comment: 13 pages, 8 main figures, 1 appendix with 5 extra figure

    WLIMES, The Wandering LIMES: Towards a Theoretical Framework for Wandering Logic Intelligence Memory Evolutive Systems

    Get PDF
    This paper compares two complementary theories, Simeonov’s Wandering Logic Intelligence and Ehresmann’s & Vanbremeersch’s Memory Evolutive Systems, in view of developing a common framework for the study of multiscale complex systems such as living systems. It begins by a brief summary of WLI and MES, then analyzes their resemblances and differences. Finally, the article provides an outlook for a future research

    Enaction-Based Artificial Intelligence: Toward Coevolution with Humans in the Loop

    Full text link
    This article deals with the links between the enaction paradigm and artificial intelligence. Enaction is considered a metaphor for artificial intelligence, as a number of the notions which it deals with are deemed incompatible with the phenomenal field of the virtual. After explaining this stance, we shall review previous works regarding this issue in terms of artifical life and robotics. We shall focus on the lack of recognition of co-evolution at the heart of these approaches. We propose to explicitly integrate the evolution of the environment into our approach in order to refine the ontogenesis of the artificial system, and to compare it with the enaction paradigm. The growing complexity of the ontogenetic mechanisms to be activated can therefore be compensated by an interactive guidance system emanating from the environment. This proposition does not however resolve that of the relevance of the meaning created by the machine (sense-making). Such reflections lead us to integrate human interaction into this environment in order to construct relevant meaning in terms of participative artificial intelligence. This raises a number of questions with regards to setting up an enactive interaction. The article concludes by exploring a number of issues, thereby enabling us to associate current approaches with the principles of morphogenesis, guidance, the phenomenology of interactions and the use of minimal enactive interfaces in setting up experiments which will deal with the problem of artificial intelligence in a variety of enaction-based ways
    • …
    corecore