2,616 research outputs found

    Evolutionary q-Gaussian Radial Basis Functions for Improving Prediction Accuracy of Gene Classification Using Feature Selection

    Get PDF
    This paper proposes a Radial Basis Function Neural Network (RBFNN) which reproduces different Radial Basis Functions (RBFs) by means of a real parameter q, named q-Gaussian RBFNN. The architecture, weights and node topology are learnt through a Hybrid Algorithm (HA) with the iRprop + algorithm as the local improvement procedure. In order to test its overall performance, an experimental study with four gene microarray datasets with two classes taken from bioinformatic and biomedical domains is presented. The Fast Correlation–Based Filter (FCBF) was applied in order to identify salient expression genes from thousands of genes in microarray data that can directly contribute to determining the class membership of each pattern. After different gene subsets were obtained, the proposed methodology was performed using the selected gene subsets as the new input variables. The results confirm that the q-Gaussian RBFNN classifier leads to promising improvement on accuracy

    Radial Basis Function Neural Networks : A Review

    Get PDF
    Radial Basis Function neural networks (RBFNNs) represent an attractive alternative to other neural network models. One reason is that they form a unifying link between function approximation, regularization, noisy interpolation, classification and density estimation. It is also the case that training RBF neural networks is faster than training multi-layer perceptron networks. RBFNN learning is usually split into an unsupervised part, where center and widths of the Gaussian basis functions are set, and a linear supervised part for weight computation. This paper reviews various learning methods for determining centers, widths, and synaptic weights of RBFNN. In addition, we will point to some applications of RBFNN in various fields. In the end, we name software that can be used for implementing RBFNNs

    Protein Superfamily Classification using Computational Intelligence Techniques

    Get PDF
    The problem of protein superfamily classification is a challenging research area in Bioinformatics and has its major application in drug discovery. If a newly discovered protein which is responsible for the cause of new disease gets correctly classified to its superfamily, then the task of the drug analyst becomes much easier. The analyst can perform molecular docking to find the correct relative orientation of ligand for the protein. The ligand database can be searched for all possible orientations and conformations of the protein belonging to that superfamily paired with the ligand. Thus, the search space is reduced enormously as the protein-ligand pair is searched for a particular protein superfamily. Therefore, correct classification of proteins becomes a very challenging task as it guides the analysts to discover appropriate drugs. In this thesis, Neural Networks (NN), Multiobjective Genetic Algorithm (MOGA),and Support Vector Machine (SVM) are applied to perform the classification task.Adaptive MultiObjective Genetic Algorithm (AMOGA), which is a variation of MOGA is implemented for the structure optimization of Radial Basis Function Network (RBFN). The modification to MOGA is done based on the two key controlling parameters such as probability of crossover and probability of mutation. These values are adaptively varied based upon the performance of the algorithm, i.e., based upon the percentage of the total population present in the best non-domination level. The problem of finding the number of hidden centers remains a critical issue for the design of RBFN. The most optimal RBF network with good generalization ability can be derived from the pareto optimal set. Therefore, every solution of the pareto optimal set gives information regarding the specific samples to be chosen as hidden centers as well as the update weight matrix connecting the hidden and output layer. Principal Component Analysis (PCA) has been used for dimension reduction and significant feature extraction from long feature vector of amino acid sequences.In two-stage approach for protein superfamily classification, feature extraction process is carried in the first stage and design of the classifier has been proposed in the second stage with an overall objective to maximize the performance accuracy of the classifier. In the feature extraction phase, Genetic Algorithm(GA) based wrapper approach is used to select few eigen vectors from the PCA space which are encoded as binary strings in the chromosome. Using PCA-NSGA-II (non-dominated sorting GA), the non-dominated solutions obtained from the pareto front solves the trade-off problem by compromising between the number of eigen vectors selected and the accuracy obtained by the classifier. In the second stage, Recursive Orthogonal Least Square Algorithm (ROLSA) is used for training RBFN. ROLSA selects the optimal number o

    Applications of Artificial Intelligence in Power Systems

    Get PDF
    Artificial intelligence tools, which are fast, robust and adaptive can overcome the drawbacks of traditional solutions for several power systems problems. In this work, applications of AI techniques have been studied for solving two important problems in power systems. The first problem is static security evaluation (SSE). The objective of SSE is to identify the contingencies in planning and operations of power systems. Numerical conventional solutions are time-consuming, computationally expensive, and are not suitable for online applications. SSE may be considered as a binary-classification, multi-classification or regression problem. In this work, multi-support vector machine is combined with several evolutionary computation algorithms, including particle swarm optimization (PSO), differential evolution, Ant colony optimization for the continuous domain, and harmony search techniques to solve the SSE. Moreover, support vector regression is combined with modified PSO with a proposed modification on the inertia weight in order to solve the SSE. Also, the correct accuracy of classification, the speed of training, and the final cost of using power equipment heavily depend on the selected input features. In this dissertation, multi-object PSO has been used to solve this problem. Furthermore, a multi-classifier voting scheme is proposed to get the final test output. The classifiers participating in the voting scheme include multi-SVM with different types of kernels and random forests with an adaptive number of trees. In short, the development and performance of different machine learning tools combined with evolutionary computation techniques have been studied to solve the online SSE. The performance of the proposed techniques is tested on several benchmark systems, namely the IEEE 9-bus, 14-bus, 39-bus, 57-bus, 118-bus, and 300-bus power systems. The second problem is the non-convex, nonlinear, and non-differentiable economic dispatch (ED) problem. The purpose of solving the ED is to improve the cost-effectiveness of power generation. To solve ED with multi-fuel options, prohibited operating zones, valve point effect, and transmission line losses, genetic algorithm (GA) variant-based methods, such as breeder GA, fast navigating GA, twin removal GA, kite GA, and United GA are used. The IEEE systems with 6-units, 10-units, and 15-units are used to study the efficiency of the algorithms

    Study on identification of nonlinear systems using Quasi-ARX models

    Get PDF
    制度:新 ; 報告番号:甲3660号 ; 学位の種類:博士(工学) ; 授与年月日:2012/9/15 ; 早大学位記番号:新6026Waseda Universit

    Applications of Artificial Intelligence in Power Systems

    Get PDF
    Artificial intelligence tools, which are fast, robust and adaptive can overcome the drawbacks of traditional solutions for several power systems problems. In this work, applications of AI techniques have been studied for solving two important problems in power systems. The first problem is static security evaluation (SSE). The objective of SSE is to identify the contingencies in planning and operations of power systems. Numerical conventional solutions are time-consuming, computationally expensive, and are not suitable for online applications. SSE may be considered as a binary-classification, multi-classification or regression problem. In this work, multi-support vector machine is combined with several evolutionary computation algorithms, including particle swarm optimization (PSO), differential evolution, Ant colony optimization for the continuous domain, and harmony search techniques to solve the SSE. Moreover, support vector regression is combined with modified PSO with a proposed modification on the inertia weight in order to solve the SSE. Also, the correct accuracy of classification, the speed of training, and the final cost of using power equipment heavily depend on the selected input features. In this dissertation, multi-object PSO has been used to solve this problem. Furthermore, a multi-classifier voting scheme is proposed to get the final test output. The classifiers participating in the voting scheme include multi-SVM with different types of kernels and random forests with an adaptive number of trees. In short, the development and performance of different machine learning tools combined with evolutionary computation techniques have been studied to solve the online SSE. The performance of the proposed techniques is tested on several benchmark systems, namely the IEEE 9-bus, 14-bus, 39-bus, 57-bus, 118-bus, and 300-bus power systems. The second problem is the non-convex, nonlinear, and non-differentiable economic dispatch (ED) problem. The purpose of solving the ED is to improve the cost-effectiveness of power generation. To solve ED with multi-fuel options, prohibited operating zones, valve point effect, and transmission line losses, genetic algorithm (GA) variant-based methods, such as breeder GA, fast navigating GA, twin removal GA, kite GA, and United GA are used. The IEEE systems with 6-units, 10-units, and 15-units are used to study the efficiency of the algorithms

    Hybrid ACO and SVM algorithm for pattern classification

    Get PDF
    Ant Colony Optimization (ACO) is a metaheuristic algorithm that can be used to solve a variety of combinatorial optimization problems. A new direction for ACO is to optimize continuous and mixed (discrete and continuous) variables. Support Vector Machine (SVM) is a pattern classification approach originated from statistical approaches. However, SVM suffers two main problems which include feature subset selection and parameter tuning. Most approaches related to tuning SVM parameters discretize the continuous value of the parameters which will give a negative effect on the classification performance. This study presents four algorithms for tuning the SVM parameters and selecting feature subset which improved SVM classification accuracy with smaller size of feature subset. This is achieved by performing the SVM parameters’ tuning and feature subset selection processes simultaneously. Hybridization algorithms between ACO and SVM techniques were proposed. The first two algorithms, ACOR-SVM and IACOR-SVM, tune the SVM parameters while the second two algorithms, ACOMV-R-SVM and IACOMV-R-SVM, tune the SVM parameters and select the feature subset simultaneously. Ten benchmark datasets from University of California, Irvine, were used in the experiments to validate the performance of the proposed algorithms. Experimental results obtained from the proposed algorithms are better when compared with other approaches in terms of classification accuracy and size of the feature subset. The average classification accuracies for the ACOR-SVM, IACOR-SVM, ACOMV-R and IACOMV-R algorithms are 94.73%, 95.86%, 97.37% and 98.1% respectively. The average size of feature subset is eight for the ACOR-SVM and IACOR-SVM algorithms and four for the ACOMV-R and IACOMV-R algorithms. This study contributes to a new direction for ACO that can deal with continuous and mixed-variable ACO

    Bayesian Approximate Kernel Regression with Variable Selection

    Full text link
    Nonlinear kernel regression models are often used in statistics and machine learning because they are more accurate than linear models. Variable selection for kernel regression models is a challenge partly because, unlike the linear regression setting, there is no clear concept of an effect size for regression coefficients. In this paper, we propose a novel framework that provides an effect size analog of each explanatory variable for Bayesian kernel regression models when the kernel is shift-invariant --- for example, the Gaussian kernel. We use function analytic properties of shift-invariant reproducing kernel Hilbert spaces (RKHS) to define a linear vector space that: (i) captures nonlinear structure, and (ii) can be projected onto the original explanatory variables. The projection onto the original explanatory variables serves as an analog of effect sizes. The specific function analytic property we use is that shift-invariant kernel functions can be approximated via random Fourier bases. Based on the random Fourier expansion we propose a computationally efficient class of Bayesian approximate kernel regression (BAKR) models for both nonlinear regression and binary classification for which one can compute an analog of effect sizes. We illustrate the utility of BAKR by examining two important problems in statistical genetics: genomic selection (i.e. phenotypic prediction) and association mapping (i.e. inference of significant variants or loci). State-of-the-art methods for genomic selection and association mapping are based on kernel regression and linear models, respectively. BAKR is the first method that is competitive in both settings.Comment: 22 pages, 3 figures, 3 tables; theory added; new simulations presented; references adde
    corecore