3,044 research outputs found

    Knowledge mining sensory evaluation data: genetic programming, statistical techniques, and swarm optimization

    Get PDF
    Knowledge mining sensory evaluation data is a challenging process due to extreme sparsity of the data, and a large variation in responses from different members (called assessors) of the panel. The main goals of knowledge mining in sensory sciences are understanding the dependency of the perceived liking score on the concentration levels of flavors’ ingredients, identifying ingredients that drive liking, segmenting the panel into groups with similar liking preferences and optimizing flavors to maximize liking per group. Our approach employs (1) Genetic programming (symbolic regression) and ensemble methods to generate multiple diverse explanations of assessor liking preferences with confidence information; (2) statistical techniques to extrapolate using the produced ensembles to unobserved regions of the flavor space, and segment the assessors into groups which either have the same propensity to like flavors, or are driven by the same ingredients; and (3) two-objective swarm optimization to identify flavors which are well and consistently liked by a selected segment of assessors

    Towards efficient multiobjective optimization: multiobjective statistical criterions

    Get PDF
    The use of Surrogate Based Optimization (SBO) is widely spread in engineering design to reduce the number of computational expensive simulations. However, "real-world" problems often consist of multiple, conflicting objectives leading to a set of equivalent solutions (the Pareto front). The objectives are often aggregated into a single cost function to reduce the computational cost, though a better approach is to use multiobjective optimization methods to directly identify a set of Pareto-optimal solutions, which can be used by the designer to make more efficient design decisions (instead of making those decisions upfront). Most of the work in multiobjective optimization is focused on MultiObjective Evolutionary Algorithms (MOEAs). While MOEAs are well-suited to handle large, intractable design spaces, they typically require thousands of expensive simulations, which is prohibitively expensive for the problems under study. Therefore, the use of surrogate models in multiobjective optimization, denoted as MultiObjective Surrogate-Based Optimization (MOSBO), may prove to be even more worthwhile than SBO methods to expedite the optimization process. In this paper, the authors propose the Efficient Multiobjective Optimization (EMO) algorithm which uses Kriging models and multiobjective versions of the expected improvement and probability of improvement criterions to identify the Pareto front with a minimal number of expensive simulations. The EMO algorithm is applied on multiple standard benchmark problems and compared against the well-known NSGA-II and SPEA2 multiobjective optimization methods with promising results

    Planning as Optimization: Dynamically Discovering Optimal Configurations for Runtime Situations

    Full text link
    The large number of possible configurations of modern software-based systems, combined with the large number of possible environmental situations of such systems, prohibits enumerating all adaptation options at design time and necessitates planning at run time to dynamically identify an appropriate configuration for a situation. While numerous planning techniques exist, they typically assume a detailed state-based model of the system and that the situations that warrant adaptations are known. Both of these assumptions can be violated in complex, real-world systems. As a result, adaptation planning must rely on simple models that capture what can be changed (input parameters) and observed in the system and environment (output and context parameters). We therefore propose planning as optimization: the use of optimization strategies to discover optimal system configurations at runtime for each distinct situation that is also dynamically identified at runtime. We apply our approach to CrowdNav, an open-source traffic routing system with the characteristics of a real-world system. We identify situations via clustering and conduct an empirical study that compares Bayesian optimization and two types of evolutionary optimization (NSGA-II and novelty search) in CrowdNav

    Meta-Learning by the Baldwin Effect

    Full text link
    The scope of the Baldwin effect was recently called into question by two papers that closely examined the seminal work of Hinton and Nowlan. To this date there has been no demonstration of its necessity in empirically challenging tasks. Here we show that the Baldwin effect is capable of evolving few-shot supervised and reinforcement learning mechanisms, by shaping the hyperparameters and the initial parameters of deep learning algorithms. Furthermore it can genetically accommodate strong learning biases on the same set of problems as a recent machine learning algorithm called MAML "Model Agnostic Meta-Learning" which uses second-order gradients instead of evolution to learn a set of reference parameters (initial weights) that can allow rapid adaptation to tasks sampled from a distribution. Whilst in simple cases MAML is more data efficient than the Baldwin effect, the Baldwin effect is more general in that it does not require gradients to be backpropagated to the reference parameters or hyperparameters, and permits effectively any number of gradient updates in the inner loop. The Baldwin effect learns strong learning dependent biases, rather than purely genetically accommodating fixed behaviours in a learning independent manner

    Global optimization for quantum dynamics of few-fermion systems

    Full text link
    Quantum state preparation is vital to quantum computation and quantum information processing tasks. In adiabatic state preparation, the target state is theoretically obtained with nearly perfect fidelity if the control parameter is tuned slowly enough. As this, however, leads to slow dynamics, it is often desirable to be able to do processes faster. In this work, we employ two global optimization methods to estimate the quantum speed limit for few-fermion systems confined in a one-dimensional harmonic trap. Such systems can be produced experimentally in a well controlled manner. We determine the optimized control fields and achieve a reduction in the ramping time of more than a factor of four compared to linear ramping. We also investigate how robust the fidelity is to small variations of the control fields away from the optimized shapes.Comment: 8 pages, 5 figures, 1 tabl

    Optimization of micropillar sequences for fluid flow sculpting

    Get PDF
    Inertial fluid flow deformation around pillars in a microchannel is a new method for controlling fluid flow. Sequences of pillars have been shown to produce a rich phase space with a wide variety of flow transformations. Previous work has successfully demonstrated manual design of pillar sequences to achieve desired transformations of the flow cross-section, with experimental validation. However, such a method is not ideal for seeking out complex sculpted shapes as the search space quickly becomes too large for efficient manual discovery. We explore fast, automated optimization methods to solve this problem. We formulate the inertial flow physics in microchannels with different micropillar configurations as a set of state transition matrix operations. These state transition matrices are constructed from experimentally validated streamtraces. This facilitates modeling the effect of a sequence of micropillars as nested matrix-matrix products, which have very efficient numerical implementations. With this new forward model, arbitrary micropillar sequences can be rapidly simulated with various inlet configurations, allowing optimization routines quick access to a large search space. We integrate this framework with the genetic algorithm and showcase its applicability by designing micropillar sequences for various useful transformations. We computationally discover micropillar sequences for complex transformations that are substantially shorter than manually designed sequences. We also determine sequences for novel transformations that were difficult to manually design. Finally, we experimentally validate these computational designs by fabricating devices and comparing predictions with the results from confocal microscopy
    • …
    corecore