1,537 research outputs found

    A multi-objective optimization approach for the synthesis of granular computing-based classification systems in the graph domain

    Get PDF
    The synthesis of a pattern recognition system usually aims at the optimization of a given performance index. However, in many real-world scenarios, there exist other desired facets to take into account. In this regard, multi-objective optimization acts as the main tool for the optimization of different (and possibly conflicting) objective functions in order to seek for potential trade-offs among them. In this paper, we propose a three-objective optimization problem for the synthesis of a granular computing-based pattern recognition system in the graph domain. The core pattern recognition engine searches for suitable information granules (i.e., recurrent and/or meaningful subgraphs from the training data) on the top of which the graph embedding procedure towards the Euclidean space is performed. In the latter, any classification system can be employed. The optimization problem aims at jointly optimizing the performance of the classifier, the number of information granules and the structural complexity of the classification model. Furthermore, we address the problem of selecting a suitable number of solutions from the resulting Pareto Fronts in order to compose an ensemble of classifiers to be tested on previously unseen data. To perform such selection, we employed a multi-criteria decision making routine by analyzing different case studies that differ on how much each objective function weights in the ranking process. Results on five open-access datasets of fully labeled graphs show that exploiting the ensemble is effective (especially when the structural complexity of the model plays a minor role in the decision making process) if compared against the baseline solution that solely aims at maximizing the performances

    Pattern Recognition of Surgically Altered Face Images Using Multi-Objective Evolutionary Algorithm

    Get PDF
    Plastic surgery has been recently coming up with a new and important aspect of face recognition alongside pose, expression, illumination, aging and disguise. Plastic surgery procedures changes the texture, appearance and the shape of different facial regions. Therefore, it is difficult for conventional face recognition algorithms to match a post-surgery face image with a pre-surgery face image. The non-linear variations produced by plastic surgery procedures are hard to be addressed using current face recognition algorithms. The multi-objective evolutionary algorithm is a novel approach for pattern recognition of surgically altered face images. The algorithms starts with generating non-disjoint face granules and two feature extractors EUCLBP (Extended Uniform Circular Local Binary Pattern) and SIFT (Scale Invariant Feature Transform), are used to extract discriminating facial information from face granules. DOI: 10.17762/ijritcc2321-8169.150316

    A HEDGE ALGEBRAS BASED CLASSIFICATION REASONING METHOD WITH MULTI-GRANULARITY FUZZY PARTITIONING

    Get PDF
    During last years, lots of the fuzzy rule based classifier (FRBC) design methods have been proposed to improve the classification accuracy and the interpretability of the proposed classification models. Most of them are based on the fuzzy set theory approach in such a way that the fuzzy classification rules are generated from the grid partitions combined with the pre-designed fuzzy partitions using fuzzy sets. Some mechanisms are studied to automatically generate fuzzy partitions from data such as discretization, granular computing, etc. Even those, linguistic terms are intuitively assigned to fuzzy sets because there is no formalisms to link inherent semantics of linguistic terms to fuzzy sets. In view of that trend, genetic design methods of linguistic terms along with their (triangular and trapezoidal) fuzzy sets based semantics for FRBCs, using hedge algebras as the mathematical formalism, have been proposed. Those hedge algebras-based design methods utilize semantically quantifying mapping values of linguistic terms to generate their fuzzy sets based semantics so as to make use of fuzzy sets based-classification reasoning methods proposed in design methods based on fuzzy set theoretic approach for data classification. If there exists a classification reasoning method which bases merely on semantic parameters of hedge algebras, fuzzy sets-based semantics of the linguistic terms in fuzzy classification rule bases can be replaced by semantics - based hedge algebras. This paper presents a FRBC design method based on hedge algebras approach by introducing a hedge algebra- based classification reasoning method with multi-granularity fuzzy partitioning for data classification so that the semantic of linguistic terms in rule bases can be hedge algebras-based semantics. Experimental results over 17 real world datasets are compared to existing methods based on hedge algebras and the state-of-the-art fuzzy sets theoretic-based approaches, showing that the proposed FRBC in this paper is an effective classifier and produces good results

    An overview of recent distributed algorithms for learning fuzzy models in Big Data classification

    Get PDF
    AbstractNowadays, a huge amount of data are generated, often in very short time intervals and in various formats, by a number of different heterogeneous sources such as social networks and media, mobile devices, internet transactions, networked devices and sensors. These data, identified as Big Data in the literature, are characterized by the popular Vs features, such as Value, Veracity, Variety, Velocity and Volume. In particular, Value focuses on the useful knowledge that may be mined from data. Thus, in the last years, a number of data mining and machine learning algorithms have been proposed to extract knowledge from Big Data. These algorithms have been generally implemented by using ad-hoc programming paradigms, such as MapReduce, on specific distributed computing frameworks, such as Apache Hadoop and Apache Spark. In the context of Big Data, fuzzy models are currently playing a significant role, thanks to their capability of handling vague and imprecise data and their innate characteristic to be interpretable. In this work, we give an overview of the most recent distributed learning algorithms for generating fuzzy classification models for Big Data. In particular, we first show some design and implementation details of these learning algorithms. Thereafter, we compare them in terms of accuracy and interpretability. Finally, we argue about their scalability

    Evolutionary Granular Kernel Machines

    Get PDF
    Kernel machines such as Support Vector Machines (SVMs) have been widely used in various data mining applications with good generalization properties. Performance of SVMs for solving nonlinear problems is highly affected by kernel functions. The complexity of SVMs training is mainly related to the size of a training dataset. How to design a powerful kernel, how to speed up SVMs training and how to train SVMs with millions of examples are still challenging problems in the SVMs research. For these important problems, powerful and flexible kernel trees called Evolutionary Granular Kernel Trees (EGKTs) are designed to incorporate prior domain knowledge. Granular Kernel Tree Structure Evolving System (GKTSES) is developed to evolve the structures of Granular Kernel Trees (GKTs) without prior knowledge. A voting scheme is also proposed to reduce the prediction deviation of GKTSES. To speed up EGKTs optimization, a master-slave parallel model is implemented. To help SVMs challenge large-scale data mining, a Minimum Enclosing Ball (MEB) based data reduction method is presented, and a new MEB-SVM algorithm is designed. All these kernel methods are designed based on Granular Computing (GrC). In general, Evolutionary Granular Kernel Machines (EGKMs) are investigated to optimize kernels effectively, speed up training greatly and mine huge amounts of data efficiently

    Recognizing Surgically Altered Face Images and 3D Facial Expression Recognition

    Get PDF
    AbstractAltering Facial appearances using surgical procedures are common now days. But it raised challenges for face recognition algorithms. Plastic surgery introduces non linear variations. Because of these variations it is difficult to be modeled by the existing face recognition system. Here presents a multi objective evolutionary granular algorithm. It operates on several granules extracted from a face images at multiple level of granularity. This granular information is unified in an evolutionary manner using multi objective genetic approach. Then identify the facial expression from the face images. For that 3D facial shapes are considering here. A novel automatic feature selection method is proposed based on maximizing the average relative entropy of marginalized class-conditional feature distributions and apply it to a complete pool of candidate features composed of normalized Euclidian distances between 83 facial feature points in the 3D space. A regularized multi-class AdaBoost classification algorithm is used here to get the highest average recognition rate

    Multiple classifiers fusion and CNN feature extraction for handwritten digits recognition

    Get PDF
    Handwritten digits recognition has been treated as a multi-class classification problem in the machine learning context, where each of the ten digits (0-9) is viewed as a class and the machine learning task is essentially to train a classifier that can effectively discriminate the ten classes. In practice, it is very usual that the performance of a single classifier trained by using a standard learning algorithm is varied on different data sets, which indicates that the same learning algorithm may train strong classifiers on some data sets but weak classifiers may be trained on other data sets. It is also possible that the same classifier shows different performance on different test sets, especially when considering the case that image instances can be highly diverse due to the different handwriting styles of different people on the same digits. In order to address the above issue, development of ensemble learning approaches have been very necessary to improve the overall performance and make the performance more stable on different data sets. In this paper, we propose a framework that involves CNN based feature extraction from the MINST data set and algebraic fusion of multiple classifiers trained on different feature sets, which are prepared through feature selection applied to the original feature set extracted using CNN. The experimental results show that the classifiers fusion can achieve the classification accuracy of ≥ 98%

    GBSVM: Granular-ball Support Vector Machine

    Full text link
    GBSVM (Granular-ball Support Vector Machine) is an important attempt to use the coarse granularity of a granular-ball as the input to construct a classifier instead of a data point. It is the first classifier whose input contains no points, i.e., xix_i, in the history of machine learning. However, on the one hand, its dual model is not derived, and the algorithm has not been implemented and can not be applied. On the other hand, there are some errors in its existing model. To address these problems, this paper has fixed the errors of the original model of GBSVM, and derived its dual model. Furthermore, an algorithm is designed using particle swarm optimization algorithm to solve the dual model. The experimental results on the UCI benchmark datasets demonstrate that GBSVM has good robustness and efficiency

    OCEAn: Ordinal classification with an ensemble approach

    Get PDF
    Generally, classification problems catalog instances according to their target variable with out considering the relation among the different labels. However, there are real problems in which the different values of the class are related to each other. Because of interest in this type of problem, several solutions have been proposed, such as cost-sensitive classi fiers. Ensembles have proven to be very effective for classification tasks; however, as far as we know, there are no proposals that use a genetic-based methodology as the meta heuristic to create the models. In this paper, we present OCEAn, an ordinal classification algorithm based on an ensemble approach, which makes a final prediction according to a weighted vote system. This weighted voting takes into account weights obtained by a genetic algorithm that tries to minimize the cost of classification. To test the performance of this approach, we compared our proposal with ordinal classification algorithms in the literature and demonstrated that, indeed, our approach improves on previous resultsMinisterio de Ciencia, Innovación y Universidades TIN2017-88209-C2Junta de Andalucía US-126334
    corecore