64 research outputs found

    Application of biosignal-driven intelligent systems for multifunction prosthesis control

    Full text link
    University of Technology, Sydney. Faculty of Engineering and Information Technology.Prosthetic devices aim to provide an artificial alternative to missing limbs. The controller for such devices is usually driven by the biosignals generated by the human body, particularly Electromyogram (EMG) or Electroencephalogram (EEG) signals. Such a controller utilizes a pattern recognition approach to classify the EMG signal recorded from the human muscles or the EEG signal from the brain. The aim of this thesis is to improve the EMG and EEG pattern classification accuracy. Due to the fact that the success of pattern recognition based biosignal driven systems highly depends on the quality of extracted features, a number of novel, robust, hybrid and innovative methods are proposed to achieve better performance. These methods are developed to effectively tackle many of the limitations of existing systems, in particular feature representation and dimensionality reduction. A set of knowledge extraction methods that can accurately and rapidly identify the most important attributes for classifying the arm movements are formulated. This is accomplished through the following: 1. Developing a new feature extraction technique that can identify the most important features from the high-dimensional time-frequency representation of the multichannel EMG and EEG signals. For this task, an information content estimation method using fuzzy entropies and fuzzy mutual information is proposed to identify the optimal wravelet packet transform decomposition for classification. 2. Developing a powerful variable (feature or channel) selection paradigm to improve the performance of multi-channel EMG and EEG driven systems. This will eventually lead to the development of a combined channel and feature selection technique as one possible scheme for dimensionality reduction. Two novel feature selection methods are developed under this scheme utilizing the ant colony arid differential evolution optimization techniques. The differential evolution optimization technique is further modified in a novel attempt in employing a float optimizer for the combinatorial task of feature selection, proving powerful performance by both methods. 3. Developing two feature projection techniques that extract a small subset of highly informative discriminant features, thus acting as an alternative scheme for dimensionality reduction. The two methods represent novel variations to fuzzy discriminant analysis based projection techniques. In addition, an extension to the non-linear discriminant analysis is proposed based on a mixture of differential evolution and fuzzy discriminant analysis. The testing and verification process of the proposed methods on different EMG and EEG datasets provides very encouraging results

    Application of Linear Discriminant Analysis in Dimensionality Reduction for Hand Motion Classification

    Get PDF
    The classification of upper-limb movements based on surface electromyography (EMG) signals is an important issue in the control of assistive devices and rehabilitation systems. Increasing the number of EMG channels and features in order to increase the number of control commands can yield a high dimensional feature vector. To cope with the accuracy and computation problems associated with high dimensionality, it is commonplace to apply a processing step that transforms the data to a space of significantly lower dimensions with only a limited loss of useful information. Linear discriminant analysis (LDA) has been successfully applied as an EMG feature projection method. Recently, a number of extended LDA-based algorithms have been proposed, which are more competitive in terms of both classification accuracy and computational costs/times with classical LDA. This paper presents the findings of a comparative study of classical LDA and five extended LDA methods. From a quantitative comparison based on seven multi-feature sets, three extended LDA-based algorithms, consisting of uncorrelated LDA, orthogonal LDA and orthogonal fuzzy neighborhood discriminant analysis, produce better class separability when compared with a baseline system (without feature projection), principle component analysis (PCA), and classical LDA. Based on a 7-dimension time domain and time-scale feature vectors, these methods achieved respectively 95.2% and 93.2% classification accuracy by using a linear discriminant classifier

    Implementation of a neural network-based electromyographic control system for a printed robotic hand

    Get PDF
    3D printing has revolutionized the manufacturing process reducing costs and time, but only when combined with robotics and electronics, this structures could develop their full potential. In order to improve the available printable hand designs, a control system based on electromyographic (EMG) signals has been implemented, so that different movement patterns can be recognized and replicated in the bionic hand in real time. This control system has been developed in Matlab/ Simulink comprising EMG signal acquisition, feature extraction, dimensionality reduction and pattern recognition through a trained neural-network. Pattern recognition depends on the features used, their dimensions and the time spent in signal processing. Finding balance between this execution time and the input features of the neural network is a crucial step for an optimal classification.Ingeniería Biomédic

    A novel swarm based feature selection algorithm in multifunction myoelectric control

    Full text link
    Accurate and computationally efficient myoelectric control strategies have been the focus of a great deal of research in recent years. Although many attempts exist in literature to develop such strategies, deficiencies still exist. One of the major challenges in myoelectric control is finding an optimal feature set that can best discriminate between classes. However, since the myoelectric signal is recorded using multi channels, the feature vector size can become very large. Hence a dimensionality reduction method is needed to identify an informative, yet small size feature set. This paper presents a new feature selection method based on modifying the Particle Swarm Optimization (PSO) algorithm with the inclusion of Mutual Information (MI) measure. The new method, called BPSOMI, is a mixture of filter and wrapper approaches of feature selection. In order to prove its efficiency, the proposed method is tested against other dimensionality reduction techniques proving powerful classification accuracy. © 2009 - IOS Press and the authors. All rights reserved

    CES-513 Stages for Developing Control Systems using EMG and EEG Signals: A survey

    Get PDF
    Bio-signals such as EMG (Electromyography), EEG (Electroencephalography), EOG (Electrooculogram), ECG (Electrocardiogram) have been deployed recently to develop control systems for improving the quality of life of disabled and elderly people. This technical report aims to review the current deployment of these state of the art control systems and explain some challenge issues. In particular, the stages for developing EMG and EEG based control systems are categorized, namely data acquisition, data segmentation, feature extraction, classification, and controller. Some related Bio-control applications are outlined. Finally a brief conclusion is summarized.

    Instance-based Learning with Prototype Reduction for Real-Time Proportional Myocontrol: A Randomized User Study Demonstrating Accuracy-preserving Data Reduction for Prosthetic Embedded Systems

    Full text link
    This work presents the design, implementation and validation of learning techniques based on the kNN scheme for gesture detection in prosthetic control. To cope with high computational demands in instance-based prediction, methods of dataset reduction are evaluated considering real-time determinism to allow for the reliable integration into battery-powered portable devices. The influence of parameterization and varying proportionality schemes is analyzed, utilizing an eight-channel-sEMG armband. Besides offline cross-validation accuracy, success rates in real-time pilot experiments (online target achievement tests) are determined. Based on the assessment of specific dataset reduction techniques' adequacy for embedded control applications regarding accuracy and timing behaviour, Decision Surface Mapping (DSM) proves itself promising when applying kNN on the reduced set. A randomized, double-blind user study was conducted to evaluate the respective methods (kNN and kNN with DSM-reduction) against Ridge Regression (RR) and RR with Random Fourier Features (RR-RFF). The kNN-based methods performed significantly better (p<0.0005) than the regression techniques. Between DSM-kNN and kNN, there was no statistically significant difference (significance level 0.05). This is remarkable in consideration of only one sample per class in the reduced set, thus yielding a reduction rate of over 99% while preserving success rate. The same behaviour could be confirmed in an extended user study. With k=1, which turned out to be an excellent choice, the runtime complexity of both kNN (in every prediction step) as well as DSM-kNN (in the training phase) becomes linear concerning the number of original samples, favouring dependable wearable prosthesis applications

    A temporal-to-spatial neural network for classification of hand movements from electromyography data

    Get PDF
    Deep convolutional neural networks (CNNs) are appealing for the purpose of classification of hand movements from surface electromyography (sEMG) data because they have the ability to perform automated person-specific feature extraction from raw data. In this paper, we make the novel contribution of proposing and evaluating a design for the early processing layers in the deep CNN for multichannel sEMG. Specifically, we propose a novel temporal-to-spatial (TtS) CNN architecture, where the first layer performs convolution separately on each sEMG channel to extract temporal features. This is motivated by the idea that sEMG signals in each channel are mediated by one or a small subset of muscles, whose temporal activation patterns are associated with the signature features of a gesture. The temporal layer captures these signature features for each channel separately, which are then spatially mixed in successive layers to recognise a specific gesture. A practical advantage is that this approach also makes the CNN simple to design for different sample rates. We use NinaPro database 1 (27 subjects and 52 movements + rest), sampled at 100 Hz, and database 2 (40 subjects and 40 movements + rest), sampled at 2 kHz, to evaluate our proposed CNN design. We benchmark against a feature-based support vector machine (SVM) classifier, two CNNs from the literature, and an additional standard design of CNN. We find that our novel TtS CNN design achieves 66.6% per-class accuracy on database 1, and 67.8% on database 2, and that the TtS CNN outperforms all other compared classifiers using a statistical hypothesis test at the 2% significance level
    corecore