37,894 research outputs found

    A Study of Dynamic Populations in Geometric Semantic Genetic Programming

    Get PDF
    Farinati, D., Bakurov, I., & Vanneschi, L. (2023). A Study of Dynamic Populations in Geometric Semantic Genetic Programming. Information Sciences, 648(November), 1-21. [119513]. https://doi.org/10.1016/j.ins.2023.119513 --- This work was supported by national funds through FCT (Fundação para a Ciência e a Tecnologia), under the project - UIDB/04152/2020 - Centro de Investigação em Gestão de Informação (MagIC)/NOVA IMS.Allowing the population size to variate during the evolution can bring advantages to evolutionary algorithms (EAs), retaining computational effort during the evolution process. Dynamic populations use computational resources wisely in several types of EAs, including genetic programming. However, so far, a thorough study on the use of dynamic populations in Geometric Semantic Genetic Programming (GSGP) is missing. Still, GSGP is a resource-greedy algorithm, and the use of dynamic populations seems appropriate. This paper adapts algorithms to GSGP to manage dynamic populations that were successful for other types of EAs and introduces two novel algorithms. The novel algorithms exploit the concept of semantic neighbourhood. These methods are assessed and compared through a set of eight regression problems. The results indicate that the algorithms outperform standard GSGP, confirming the suitability of dynamic populations for GSGP. Interestingly, the novel algorithms that use semantic neighbourhood to manage variation in population size are particularly effective in generating robust models even for the most difficult of the studied test problems.publishersversionpublishe

    A Hybrid optimization method for real-time pump scheduling

    Get PDF
    Session S6-02, Special Session: Evolutionary Computing in Water Resources Planning and Management IILinear, non-linear and dynamic programming, heuristics and evolutionary computation are amongst the techniques which have been applied to obtain solutions to optimal pump-scheduling problems. Most of these either greatly simplify the complex water distribution system or require significant time to solve the problem. The scheduling of pumps is frequently undertaken in near-real time, in order to minimize cost and maximize energy savings. However, this requires a computationally efficient algorithm that can rapidly identify an acceptable solution. In this paper, a hybrid optimization model is presented, coupling Linear Programming and Genetic Algorithms. The resulting hybrid optimization model has demonstrated more rapid convergence with respect to the traditional metaheuristic algorithms, whilst maintaining a good level of reliability

    Modeling of Biological Intelligence for SCM System Optimization

    Get PDF
    This article summarizes some methods from biological intelligence for modeling and optimization of supply chain management (SCM) systems, including genetic algorithms, evolutionary programming, differential evolution, swarm intelligence, artificial immune, and other biological intelligence related methods. An SCM system is adaptive, dynamic, open self-organizing, which is maintained by flows of information, materials, goods, funds, and energy. Traditional methods for modeling and optimizing complex SCM systems require huge amounts of computing resources, and biological intelligence-based solutions can often provide valuable alternatives for efficiently solving problems. The paper summarizes the recent related methods for the design and optimization of SCM systems, which covers the most widely used genetic algorithms and other evolutionary algorithms

    A similarity-based cooperative co-evolutionary algorithm for dynamic interval multi-objective optimization problems

    Get PDF
    The file attached to this record is the author's final peer reviewed version. The Publisher's final version can be found by following the DOI link.Dynamic interval multi-objective optimization problems (DI-MOPs) are very common in real-world applications. However, there are few evolutionary algorithms that are suitable for tackling DI-MOPs up to date. A framework of dynamic interval multi-objective cooperative co-evolutionary optimization based on the interval similarity is presented in this paper to handle DI-MOPs. In the framework, a strategy for decomposing decision variables is first proposed, through which all the decision variables are divided into two groups according to the interval similarity between each decision variable and interval parameters. Following that, two sub-populations are utilized to cooperatively optimize decision variables in the two groups. Furthermore, two response strategies, rgb0.00,0.00,0.00i.e., a strategy based on the change intensity and a random mutation strategy, are employed to rapidly track the changing Pareto front of the optimization problem. The proposed algorithm is applied to eight benchmark optimization instances rgb0.00,0.00,0.00as well as a multi-period portfolio selection problem and compared with five state-of-the-art evolutionary algorithms. The experimental results reveal that the proposed algorithm is very competitive on most optimization instances

    Digital Ecosystems: Ecosystem-Oriented Architectures

    Full text link
    We view Digital Ecosystems to be the digital counterparts of biological ecosystems. Here, we are concerned with the creation of these Digital Ecosystems, exploiting the self-organising properties of biological ecosystems to evolve high-level software applications. Therefore, we created the Digital Ecosystem, a novel optimisation technique inspired by biological ecosystems, where the optimisation works at two levels: a first optimisation, migration of agents which are distributed in a decentralised peer-to-peer network, operating continuously in time; this process feeds a second optimisation based on evolutionary computing that operates locally on single peers and is aimed at finding solutions to satisfy locally relevant constraints. The Digital Ecosystem was then measured experimentally through simulations, with measures originating from theoretical ecology, evaluating its likeness to biological ecosystems. This included its responsiveness to requests for applications from the user base, as a measure of the ecological succession (ecosystem maturity). Overall, we have advanced the understanding of Digital Ecosystems, creating Ecosystem-Oriented Architectures where the word ecosystem is more than just a metaphor.Comment: 39 pages, 26 figures, journa

    Comparison of Methods of Pump Scheduling in Water Supply Systems

    Get PDF
    In the domestic water supply industry, the reduction of pumping costs is a continuing objective. With the efficient scheduling of pumping operations, it is considered that 10% of the annual expenditure on energy and related costs may be saved. A typical cost function will include all of the expenditure caused by the pumping process and also consider the electrical cost of pumping taking into account the various electrical tariffs, as well as peak demand and pump switching costs. Using only fixed speed pumps, it is possible to use an efficient dynamic programming based method, provided that the storage reservoir levels are known. Other techniques that are showing fruitful results in optimisation are genetic programming and simulated annealing. This paper compares these methods and discusses which is more appropriate in this type of pump scheduling problem
    corecore