25,547 research outputs found

    Evolving more efficient digital circuits by allowing circuit layout evolution and multi-objective fitness

    Get PDF
    We use evolutionary search to design combinational logic circuits. The technique is based on evolving the functionality and connectivity of a rectangular array of logic cells whose dimension is defined by the circuit layout. The main idea of this approach is to improve quality of the circuits evolved by the GA by reducing the number of active gates used. We accomplish this by combining two ideas: 1) using multi-objective fitness function; 2) evolving circuit layout. It will be shown that using these two approaches allows us to increase the quality of evolved circuits. The circuits are evolved in two phases. Initially the genome fitness in given by the percentage of output bits that are correct. Once 100% functional circuits have been evolved, the number of gates actually used in the circuit is taken into account in the fitness function. This allows us to evolve circuits with 100% functionality and minimise the number of active gates in circuit structure. The population is initialised with heterogeneous circuit layouts and the circuit layout is allowed to vary during the evolutionary process. Evolving the circuit layout together with the function is one of the distinctive features of proposed approach. The experimental results show that allowing the circuit layout to be flexible is useful when we want to evolve circuits with the smallest number of gates used. We find that it is better to use a fixed circuit layout when the objective is to achieve the highest number of 100% functional circuits. The two-fitness strategy is most effective when we allow a large number of generations

    Modeling and Optimal Design of Machining-Induced Residual Stresses in Aluminium Alloys Using a Fast Hierarchical Multiobjective Optimization Algorithm

    Get PDF
    The residual stresses induced during shaping and machining play an important role in determining the integrity and durability of metal components. An important issue of producing safety critical components is to find the machining parameters that create compressive surface stresses or minimise tensile surface stresses. In this paper, a systematic data-driven fuzzy modelling methodology is proposed, which allows constructing transparent fuzzy models considering both accuracy and interpretability attributes of fuzzy systems. The new method employs a hierarchical optimisation structure to improve the modelling efficiency, where two learning mechanisms cooperate together: NSGA-II is used to improve the model’s structure while the gradient descent method is used to optimise the numerical parameters. This hybrid approach is then successfully applied to the problem that concerns the prediction of machining induced residual stresses in aerospace aluminium alloys. Based on the developed reliable prediction models, NSGA-II is further applied to the multi-objective optimal design of aluminium alloys in a ‘reverse-engineering’ fashion. It is revealed that the optimal machining regimes to minimise the residual stress and the machining cost simultaneously can be successfully located

    The genetic algorithm as a discovery engine: Strange circuits and new principles

    Get PDF
    This paper examines the idea of a genetic or evolutionary algorithm being an inspirational or discovery engine. This is illustrated in the particular context of designing electronic circuits. We argue that by connecting pieces of logic together and testing them to see if they carry out the desired function it may be possible to discover new principles of design, and new algebraic techniques. This is illustrated in the design of binary circuits, particularly arithmetic functions, where we demonstrate that by evolving a hierarchical series of examples, it becomes possible to re-discover the well known ripple-carry principle for building adder circuits of any size. We also examine the much harder case of multiplication. We show also that extending the work into the field of multiple-valued logic, the genetic algorithm is able to produce fully working circuits that lie outside conventional algebra. In addition we look at the issue of principle extraction from evolved data

    Model fusion using fuzzy aggregation: Special applications to metal properties

    Get PDF
    To improve the modelling performance, one should either propose a new modelling methodology or make the best of existing models. In this paper, the study is concentrated on the latter solution, where a structure-free modelling paradigm is proposed. It does not rely on a fixed structure and can combine various modelling techniques in ‘symbiosis’ using a ‘master fuzzy system’. This approach is shown to be able to include the advantages of different modelling techniques altogether by requiring less training and by minimising the efforts relating optimisation of the final structure. The proposed approach is then successfully applied to the industrial problems of predicting machining induced residual stresses for aerospace alloy components as well as modelling the mechanical properties of heat-treated alloy steels, both representing complex, non-linear and multi-dimensional environments
    corecore