6,353 research outputs found

    Evolutionary strategy based improved motion estimation technique for H.264 video coding

    Get PDF
    In this paper we propose an improved motion estimation algorithm based on evolutionary strategy (ES) for H.264 video codec applied to video. The proposed technique works in a parallel local search for macroblocks. For this purpose (mu+lambda) ES is used with an initial population of heuristically and randomly generated motion vectors. Experimental results show that the proposed scheme can reduce the computational complexity up to 50% of the motion estimation algorithm used in the H.264 reference codec at the same picture quality. Therefore, the proposed algorithm provides a significant improvement in motion estimation in the H.264 video codec

    An evolutionary strategy based motion estimation algorithm for H.264 video codecs

    Get PDF
    In this paper, we propose a new motion estimation algorithm based on evolutionary strategy (ES) for the H.264 video codec applied to monoscopic video. The proposed technique applies in macroblock basis and performs a parallel local search for the motion vector associated with the minimum motion compensated residue. For this purpose (/spl mu/+/spl lambda/)-ES is used with heuristically and randomly generated population of initial motion vectors. Experimental results show that the proposed scheme can reduce the computational complexity up to 50% of the motion estimation algorithm used in the H.264 reference codec at the same picture quality. Therefore, the proposed algorithm provides a significant improvement in motion estimation in the H.264 video codec

    Motion and disparity estimation with self adapted evolutionary strategy in 3D video coding

    Get PDF
    Real world information, obtained by humans is three dimensional (3-D). In experimental user-trials, subjective assessments have clearly demonstrated the increased impact of 3-D pictures compared to conventional flat-picture techniques. It is reasonable, therefore, that we humans want an imaging system that produces pictures that are as natural and real as things we see and experience every day. Three-dimensional imaging and hence, 3-D television (3DTV) are very promising approaches expected to satisfy these desires. Integral imaging, which can capture true 3D color images with only one camera, has been seen as the right technology to offer stress-free viewing to audiences of more than one person. In this paper, we propose a novel approach to use Evolutionary Strategy (ES) for joint motion and disparity estimation to compress 3D integral video sequences. We propose to decompose the integral video sequence down to viewpoint video sequences and jointly exploit motion and disparity redundancies to maximize the compression using a self adapted ES. A half pixel refinement algorithm is then applied by interpolating macro blocks in the previous frame to further improve the video quality. Experimental results demonstrate that the proposed adaptable ES with Half Pixel Joint Motion and Disparity Estimation can up to 1.5 dB objective quality gain without any additional computational cost over our previous algorithm.1Furthermore, the proposed technique get similar objective quality compared to the full search algorithm by reducing the computational cost up to 90%

    Energy efficient enabling technologies for semantic video processing on mobile devices

    Get PDF
    Semantic object-based processing will play an increasingly important role in future multimedia systems due to the ubiquity of digital multimedia capture/playback technologies and increasing storage capacity. Although the object based paradigm has many undeniable benefits, numerous technical challenges remain before the applications becomes pervasive, particularly on computational constrained mobile devices. A fundamental issue is the ill-posed problem of semantic object segmentation. Furthermore, on battery powered mobile computing devices, the additional algorithmic complexity of semantic object based processing compared to conventional video processing is highly undesirable both from a real-time operation and battery life perspective. This thesis attempts to tackle these issues by firstly constraining the solution space and focusing on the human face as a primary semantic concept of use to users of mobile devices. A novel face detection algorithm is proposed, which from the outset was designed to be amenable to be offloaded from the host microprocessor to dedicated hardware, thereby providing real-time performance and reducing power consumption. The algorithm uses an Artificial Neural Network (ANN), whose topology and weights are evolved via a genetic algorithm (GA). The computational burden of the ANN evaluation is offloaded to a dedicated hardware accelerator, which is capable of processing any evolved network topology. Efficient arithmetic circuitry, which leverages modified Booth recoding, column compressors and carry save adders, is adopted throughout the design. To tackle the increased computational costs associated with object tracking or object based shape encoding, a novel energy efficient binary motion estimation architecture is proposed. Energy is reduced in the proposed motion estimation architecture by minimising the redundant operations inherent in the binary data. Both architectures are shown to compare favourable with the relevant prior art

    Spatial prediction based on self-similarity compensation for 3D holoscopic image and video coding

    Get PDF
    WOS:000298962501022 (Nº de Acesso Web of Science)Holoscopic imaging, also known as integral imaging, provides a solution for glassless 3D, and is promising to change the market for 3D television. To start, this paper briefly describes the general concepts of holoscopic imaging, focusing mainly on the spatial correlations inherent to this new type of content, which appear due to the micro-lens array that is used for both acquisition and display. The micro-images that are formed behind each micro-lens, from which only one pixel is viewed from a given observation point, have a high cross-correlation between them, which can be exploited for coding. A novel scheme for spatial prediction, exploring the particular arrangement of holoscopic images, is proposed. The proposed scheme can be used for both still image coding and intra-coding of video. Experimental results based on an H.264/AVC video codec modified to handle 3D holoscopic images and video are presented, showing the superior performance of this approach

    Block matching algorithm for motion estimation based on Artificial Bee Colony (ABC)

    Full text link
    Block matching (BM) motion estimation plays a very important role in video coding. In a BM approach, image frames in a video sequence are divided into blocks. For each block in the current frame, the best matching block is identified inside a region of the previous frame, aiming to minimize the sum of absolute differences (SAD). Unfortunately, the SAD evaluation is computationally expensive and represents the most consuming operation in the BM process. Therefore, BM motion estimation can be approached as an optimization problem, where the goal is to find the best matching block within a search space. The simplest available BM method is the full search algorithm (FSA) which finds the most accurate motion vector through an exhaustive computation of SAD values for all elements of the search window. Recently, several fast BM algorithms have been proposed to reduce the number of SAD operations by calculating only a fixed subset of search locations at the price of poor accuracy. In this paper, a new algorithm based on Artificial Bee Colony (ABC) optimization is proposed to reduce the number of search locations in the BM process. In our algorithm, the computation of search locations is drastically reduced by considering a fitness calculation strategy which indicates when it is feasible to calculate or only estimate new search locations. Since the proposed algorithm does not consider any fixed search pattern or any other movement assumption as most of other BM approaches do, a high probability for finding the true minimum (accurate motion vector) is expected. Conducted simulations show that the proposed method achieves the best balance over other fast BM algorithms, in terms of both estimation accuracy and computational cost.Comment: 22 Pages. arXiv admin note: substantial text overlap with arXiv:1405.4721, arXiv:1406.448

    Block matching algorithm based on Harmony Search optimization for motion estimation

    Full text link
    Motion estimation is one of the major problems in developing video coding applications. Among all motion estimation approaches, Block-matching (BM) algorithms are the most popular methods due to their effectiveness and simplicity for both software and hardware implementations. A BM approach assumes that the movement of pixels within a defined region of the current frame can be modeled as a translation of pixels contained in the previous frame. In this procedure, the motion vector is obtained by minimizing a certain matching metric that is produced for the current frame over a determined search window from the previous frame. Unfortunately, the evaluation of such matching measurement is computationally expensive and represents the most consuming operation in the BM process. Therefore, BM motion estimation can be viewed as an optimization problem whose goal is to find the best-matching block within a search space. The simplest available BM method is the Full Search Algorithm (FSA) which finds the most accurate motion vector through an exhaustive computation of all the elements of the search space. Recently, several fast BM algorithms have been proposed to reduce the search positions by calculating only a fixed subset of motion vectors despite lowering its accuracy. On the other hand, the Harmony Search (HS) algorithm is a population-based optimization method that is inspired by the music improvisation process in which a musician searches for harmony and continues to polish the pitches to obtain a better harmony. In this paper, a new BM algorithm that combines HS with a fitness approximation model is proposed. The approach uses motion vectors belonging to the search window as potential solutions. A fitness function evaluates the matching quality of each motion vector candidate.Comment: 25 Pages. arXiv admin note: substantial text overlap with arXiv:1405.472
    corecore