140 research outputs found

    Musical timbre: bridging perception with semantics

    Get PDF
    Musical timbre is a complex and multidimensional entity which provides information regarding the properties of a sound source (size, material, etc.). When it comes to music, however, timbre does not merely carry environmental information, but it also conveys aesthetic meaning. In this sense, semantic description of musical tones is used to express perceptual concepts related to artistic intention. Recent advances in sound processing and synthesis technology have enabled the production of unique timbral qualities which cannot be easily associated with a familiar musical instrument. Therefore, verbal description of these qualities facilitates communication between musicians, composers, producers, audio engineers etc. The development of a common semantic framework for musical timbre description could be exploited by intuitive sound synthesis and processing systems and could even influence the way in which music is being consumed. This work investigates the relationship between musical timbre perception and its semantics. A set of listening experiments in which participants from two different language groups (Greek and English) rated isolated musical tones on semantic scales has tested semantic universality of musical timbre. The results suggested that the salient semantic dimensions of timbre, namely: luminance, texture and mass, are indeed largely common between these two languages. The relationship between semantics and perception was further examined by comparing the previously identified semantic space with a perceptual timbre space (resulting from pairwise dissimilarity rating of the same stimuli). The two spaces featured a substantial amount of common variance suggesting that semantic description can largely capture timbre perception. Additionally, the acoustic correlates of the semantic and perceptual dimensions were investigated. This work concludes by introducing the concept of partial timbre through a listening experiment that demonstrates the influence of background white noise on the perception of musical tones. The results show that timbre is a relative percept which is influenced by the auditory environment

    A Parametric Sound Object Model for Sound Texture Synthesis

    Get PDF
    This thesis deals with the analysis and synthesis of sound textures based on parametric sound objects. An overview is provided about the acoustic and perceptual principles of textural acoustic scenes, and technical challenges for analysis and synthesis are considered. Four essential processing steps for sound texture analysis are identifi ed, and existing sound texture systems are reviewed, using the four-step model as a guideline. A theoretical framework for analysis and synthesis is proposed. A parametric sound object synthesis (PSOS) model is introduced, which is able to describe individual recorded sounds through a fi xed set of parameters. The model, which applies to harmonic and noisy sounds, is an extension of spectral modeling and uses spline curves to approximate spectral envelopes, as well as the evolution of parameters over time. In contrast to standard spectral modeling techniques, this representation uses the concept of objects instead of concatenated frames, and it provides a direct mapping between sounds of diff erent length. Methods for automatic and manual conversion are shown. An evaluation is presented in which the ability of the model to encode a wide range of di fferent sounds has been examined. Although there are aspects of sounds that the model cannot accurately capture, such as polyphony and certain types of fast modulation, the results indicate that high quality synthesis can be achieved for many different acoustic phenomena, including instruments and animal vocalizations. In contrast to many other forms of sound encoding, the parametric model facilitates various techniques of machine learning and intelligent processing, including sound clustering and principal component analysis. Strengths and weaknesses of the proposed method are reviewed, and possibilities for future development are discussed

    Computational composition strategies in audiovisual laptop performance

    Get PDF
    We live in a cultural environment in which computer based musical performances have become ubiquitous. Particularly the use of laptops as instruments is a thriving practice in many genres and subcultures. The opportunity to command the most intricate level of control on the smallest of time scales in music composition and computer graphics introduces a number of complexities and dilemmas for the performer working with algorithms. Writing computer code to create audiovisuals offers abundant opportunities for discovering new ways of expression in live performance while simultaneously introducing challenges and presenting the user with difficult choices. There are a host of computational strategies that can be employed in live situations to assist the performer, including artificially intelligent performance agents who operate according to predefined algorithmic rules. This thesis describes four software systems for real time multimodal improvisation and composition in which a number of computational strategies for audiovisual laptop performances is explored and which were used in creation of a portfolio of accompanying audiovisual compositions

    Aeroacoustic simulation of rotorcraft propulsion systems.

    Get PDF
    Rotorcraft constitute air vehicles with unique capabilities, including vertical take- off and landing, hover and forward/backward/lateral flight. The efficiency of rotorcraft operations is expected to improve rapidly, due to the incorporation of novel technologies into current designs. Moreover, enhanced or even new capabilities are anticipated after the introduction of advanced fast rotorcraft configurations into the future fleet. The forecast growth in rotorcraft operations is essentially associated with an expected increase in adverse environmental impact. With respect to the forthcoming rotorcraft aviation advancements, regulatory and advisory bodies, as well as communities, have focused their attention on reducing pollutant emissions and acoustic impact of rotorcraft activity. Consequently, robust and computationally efficient noise modelling approaches are deemed as prerequisites towards quantifying the acoustic impact of present and future rotorcraft activity. Ultimately, these approaches need to cater for unique operational conditions encompassed by modern rotorcraft across designated flight procedures. Additionally, individual variations of key design variables need to be resolved, in the context of design or operational optimisation, targeted at noise mitigation. This work elaborates on the development and application of a robust and computationally efficient methodology for the aeroacoustic simulation of rotorcraft propulsion systems. A series of fundamental modelling methods is developed for the prediction of helicopter rotor noise at fully-integrated operational level. An extensive validation is carried out against existing experimental data with respect to prediction of challenging aeroacoustic phenomena arising from complex aerodynamic interactions. The robustness of the deployed method is confirmed through a cost-effective uncertainty analysis method focused on aerodynamic sources of uncertainty. A set of generalised modelling guidelines is devised for the case of not available input parameters to calibrate the aerodynamic models. The aspect of multi-disciplinary optimisation of rotorcraft at aircraft level in terms of maximising the potential benefits of novel technologies is also tackled within this work. A holistic schedule of optimal active rotor morphing control is derived, offering simultaneous mitigation of pollutant emissions and acoustic impact across a wide range of the helicopter flight envelope. Finally, the developed noise prediction method is incorporated into an operational-level optimisation algorithm, demonstrating the potential of active rotor morphing with respect to reduction of ground-noise impact. The contribution to knowledge arising from the successful completion of this work comprises both the development of methodologies for helicopter aeroacoustic analysis and the derivation of guidelines and best practices for morphing rotor control. Specifically, a generic operational-level simulation approach is developed which effectively advances the state-of-the-art in mission noise prediction. New insight is provided with respect to the impact of wake aerodynamic modelling uncertainty on the robustness of noise predictions. Moreover, the aeroacoustic aspects of a novel morphing rotor concept are explored and quantifications with respect to the trade-off between environmental and noise disciplines are offered. Finally, a generalised set of optimal rotor control guidelines is derived towards achieving the challenging environmental goals set for a sustainable future rotorcraft aviation.PhD in Aerospac

    The Semantics of Timbre

    Get PDF
    Because humans lack a sensory vocabulary for auditory experiences, timbral qualities of sounds are often conceptualized and communicated through readily available sensory attributes from different modalities (e.g., bright, warm, sweet) but also through the use of onomatopoeic attributes (e.g., ringing, buzzing, shrill) or nonsensory attributes relating to abstract constructs (e.g., rich, complex, harsh). The analysis of the linguistic description of timbre, or timbre semantics, can be considered as one way to study its perceptual representation empirically. In the most commonly adopted approach, timbre is considered as a set of verbally defined perceptual attributes that represent the dimensions of a semantic timbre space. Previous studies have identified three salient semantic dimensions for timbre along with related acoustic properties. Comparisons with similarity-based multidimensional models confirm the strong link between perceiving timbre and talking about it. Still, the cognitive and neural mechanisms of timbre semantics remain largely unknown and underexplored, especially when one looks beyond the case of acoustic musical instruments

    An exploration of sound timbre using perceptual and time-varying frequency spectrum techniques.

    Get PDF
    This thesis describes the investigation of sound timbre using perceptual and acoustical techniques, with 153 input stimuli. The acoustical methods are based on time and frequency domain representations. The thesis covers the following areas of work: 1. A consideration of previous research in timbre, the different structural forms associated with it, and different definitions concerning timbre and the timbre space representation. 2. A study concerning perceptual similarity reactions to the input stimuli, a statistical analysis of the result structure, and the implications for understanding of the structure of timbral audition. 3. Analysis and synthesis using a time-varying frequency spectrum model, with adaptive viewpoint properties to achieve appropriate time-frequency resolution. 4. Extraction of 335 timbral features from the spectral form, a statistical analysis to find those features which describe perceptual differences between stimuli, and an investigation of timbral dimensionality
    corecore