3,984 research outputs found

    Challenging the evolutionary strategy for synthesis of analogue computational circuits

    Get PDF
    There are very few reports in the past on applications of Evolutionary Strategy (ES) towards the synthesis of analogue circuits. Moreover, even fewer reports are on the synthesis of computational circuits. Last fact is mainly due to the dif-ficulty in designing of the complex nonlinear functions that these circuits perform. In this paper, the evolving power of the ES is challenged to design four computational circuits: cube root, cubing, square root and squaring functions. The synthesis succeeded due to the usage of oscillating length genotype strategy and the substructure reuse. The approach is characterized by its simplicity and represents one of the first attempts of application of ES towards the synthesis of “QR” circuits. The obtained experimental results significantly exceed the results published before in terms of the circuit quality, economy in components and computing resources utilized, revealing the great potential of the technique pro-posed to design large scale analog circuits

    Open-ended evolution to discover analogue circuits for beyond conventional applications

    Get PDF
    This is the author's accepted manuscript. The final publication is available at Springer via http://dx.doi.org/10.1007/s10710-012-9163-8. Copyright @ Springer 2012.Analogue circuits synthesised by means of open-ended evolutionary algorithms often have unconventional designs. However, these circuits are typically highly compact, and the general nature of the evolutionary search methodology allows such designs to be used in many applications. Previous work on the evolutionary design of analogue circuits has focused on circuits that lie well within analogue application domain. In contrast, our paper considers the evolution of analogue circuits that are usually synthesised in digital logic. We have developed four computational circuits, two voltage distributor circuits and a time interval metre circuit. The approach, despite its simplicity, succeeds over the design tasks owing to the employment of substructure reuse and incremental evolution. Our findings expand the range of applications that are considered suitable for evolutionary electronics

    Constrained and unconstrained evolution of “ LCR” low-pass filters with oscillating length representation

    Get PDF
    The unconstrained evolution has already been applied in the past towards design of digital circuits, and extraordinary results have been obtained, including generation of circuits with smaller number of electronic components. In this paper both constrained and unconstrained evolutions, blended with oscillating length genotype sweeping strategy, are applied towards design of analogue “ LCR” circuits. The comparison of both evolutions is made and the promising results are obtained. The new algorithm has produced the best results in terms of quality of the circuits evolved and evolutionary resources required. It differs from previous ones by its simplicity and represents one of the first attempts to apply Evolutionary Strategy towards the analogue circuit design. The obtained results are compared in details with low-pass filters previously designed

    Unconstrained evolution of close-to-ideal "LCR" low-pass filter

    Get PDF
    The unconstrained evolution has already been applied in the past towards design of digital circuits, and extraordinary results have been obtained, including generation of more compact circuits with smaller number of electronic components. In this paper the unconstrained evolution method is developed for analogue circuits. At first, the method is probed on the design of analogue low-pass filter with standard transition band. The algorithm produced the best results in terms of quality of the circuits evolved and evolutionary resources required. Then, the new methodology is applied towards more sophisticated task, the close-to-ideal low-pass filter. The new methodology developed differs from previous ones by its simplicity and represents one of the first attempts to apply evolutionary strategy towards the analogue circuit design. The obtained results are compared in details with low-pass filters previously designed

    Generalized disjunction decomposition for evolvable hardware

    Get PDF
    Evolvable hardware (EHW) refers to self-reconfiguration hardware design, where the configuration is under the control of an evolutionary algorithm (EA). One of the main difficulties in using EHW to solve real-world problems is scalability, which limits the size of the circuit that may be evolved. This paper outlines a new type of decomposition strategy for EHW, the “generalized disjunction decomposition” (GDD), which allows the evolution of large circuits. The proposed method has been extensively tested, not only with multipliers and parity bit problems traditionally used in the EHW community, but also with logic circuits taken from the Microelectronics Center of North Carolina (MCNC) benchmark library and randomly generated circuits. In order to achieve statistically relevant results, each analyzed logic circuit has been evolved 100 times, and the average of these results is presented and compared with other EHW techniques. This approach is necessary because of the probabilistic nature of EA; the same logic circuit may not be solved in the same way if tested several times. The proposed method has been examined in an extrinsic EHW system using the(1+lambda)(1 + lambda)evolution strategy. The results obtained demonstrate that GDD significantly improves the evolution of logic circuits in terms of the number of generations, reduces computational time as it is able to reduce the required time for a single iteration of the EA, and enables the evolution of larger circuits never before evolved. In addition to the proposed method, a short overview of EHW systems together with the most recent applications in electrical circuit design is provided

    Evolutionary Technique for Automated Synthesis of Electronic Rircuits

    Get PDF
    A method of evolving a circuit uses a heterogenous mix of models of both high and low levels of resolution
    corecore