1,976 research outputs found

    Evolutionary computing and particle filtering: a hardware-based motion estimation system

    Get PDF
    Particle filters constitute themselves a highly powerful estimation tool, especially when dealing with non-linear non-Gaussian systems. However, traditional approaches present several limitations, which reduce significantly their performance. Evolutionary algorithms, and more specifically their optimization capabilities, may be used in order to overcome particle-filtering weaknesses. In this paper, a novel FPGA-based particle filter that takes advantage of evolutionary computation in order to estimate motion patterns is presented. The evolutionary algorithm, which has been included inside the resampling stage, mitigates the known sample impoverishment phenomenon, very common in particle-filtering systems. In addition, a hybrid mutation technique using two different mutation operators, each of them with a specific purpose, is proposed in order to enhance estimation results and make a more robust system. Moreover, implementing the proposed Evolutionary Particle Filter as a hardware accelerator has led to faster processing times than different software implementations of the same algorithm

    Multitarget tracking with interacting population-based MCMC-PF

    Get PDF
    In this paper we address the problem of tracking multiple targets based on raw measurements by means of Particle filtering. This strategy leads to a high computational complexity as the number of targets increases, so that an efficient implementation of the tracker is necessary. We propose a new multitarget Particle Filter (PF) that solves such challenging problem. We call our filter Interacting Population-based MCMC-PF (IP-MCMC-PF) since our approach is based on parallel usage of multiple population-based Metropolis-Hastings (M-H) samplers. Furthermore, to improve the chains mixing properties, we exploit genetic alike moves performing interaction between the Markov Chain Monte Carlo (MCMC) chains. Simulation analyses verify a dramatic reduction in terms of computational time for a given track accuracy, and an increased robustness w.r.t. conventional MCMC based PF

    Random finite sets in multi-target tracking - efficient sequential MCMC implementation

    Get PDF
    Over the last few decades multi-target tracking (MTT) has proved to be a challenging and attractive research topic. MTT applications span a wide variety of disciplines, including robotics, radar/sonar surveillance, computer vision and biomedical research. The primary focus of this dissertation is to develop an effective and efficient multi-target tracking algorithm dealing with an unknown and time-varying number of targets. The emerging and promising Random Finite Set (RFS) framework provides a rigorous foundation for optimal Bayes multi-target tracking. In contrast to traditional approaches, the collection of individual targets is treated as a set-valued state. The intent of this dissertation is two-fold; first to assert that the RFS framework not only is a natural, elegant and rigorous foundation, but also leads to practical, efficient and reliable algorithms for Bayesian multi-target tracking, and second to provide several novel RFS based tracking algorithms suitable for the specific Track-Before-Detect (TBD) surveillance application. One main contribution of this dissertation is a rigorous derivation and practical implementation of a novel algorithm well suited to deal with multi-target tracking problems for a given cardinality. The proposed Interacting Population-based MCMC-PF algorithm makes use of several Metropolis-Hastings samplers running in parallel, which interact through genetic variation. Another key contribution concerns the design and implementation of two novel algorithms to handle a varying number of targets. The first approach exploits Reversible Jumps. The second approach is built upon the concepts of labeled RFSs and multiple cardinality hypotheses. The performance of the proposed algorithms is also demonstrated in practical scenarios, and shown to significantly outperform conventional multi-target PF in terms of track accuracy and consistency. The final contribution seeks to exploit external information to increase the performance of the surveillance system. In multi-target scenarios, kinematic constraints from the interaction of targets with their environment or other targets can restrict target motion. Such motion constraint information is integrated by using a fixed-lag smoothing procedure, named Knowledge-Based Fixed-Lag Smoother (KB-Smoother). The proposed combination IP-MCMC-PF/KB-Smoother yields enhanced tracking

    Multi-camera 3-D tracking using particle filter

    Get PDF
    Determining the 3D location of a moving object, and tracking it from a sequence of different camera images is a classical but still challenging problem. In our approach neither explicit triangulation, nor precise motion model are used; only the colour of the object to be tracked is required. We use a particle filter, where the observation model we have developed avoids the colour filtering of the entire image. Preliminary experiments are presented and lessons learned are commented. The approach easily scales to several cameras and new sensor cue

    Bayesian-based techniques for tracking multiple humans in an enclosed environment

    Get PDF
    This thesis deals with the problem of online visual tracking of multiple humans in an enclosed environment. The focus is to develop techniques to deal with the challenges of varying number of targets, inter-target occlusions and interactions when every target gives rise to multiple measurements (pixels) in every video frame. This thesis contains three different contributions to the research in multi-target tracking. Firstly, a multiple target tracking algorithm is proposed which focuses on mitigating the inter-target occlusion problem during complex interactions. This is achieved with the help of a particle filter, multiple video cues and a new interaction model. A Markov chain Monte Carlo particle filter (MCMC-PF) is used along with a new interaction model which helps in modeling interactions of multiple targets. This helps to overcome tracking failures due to occlusions. A new weighted Markov chain Monte Carlo (WMCMC) sampling technique is also proposed which assists in achieving a reduced tracking error. Although effective, to accommodate multiple measurements (pixels) produced by every target, this technique aggregates measurements into features which results in information loss. In the second contribution, a novel variational Bayesian clustering-based multi-target tracking framework is proposed which can associate multiple measurements to every target without aggregating them into features. It copes with complex inter-target occlusions by maintaining the identity of targets during their close physical interactions and handles efficiently a time-varying number of targets. The proposed multi-target tracking framework consists of background subtraction, clustering, data association and particle filtering. A variational Bayesian clustering technique groups the extracted foreground measurements while an improved feature based joint probabilistic data association filter (JPDAF) is developed to associate clusters of measurements to every target. The data association information is used within the particle filter to track multiple targets. The clustering results are further utilised to estimate the number of targets. The proposed technique improves the tracking accuracy. However, the proposed features based JPDAF technique results in an exponential growth of computational complexity of the overall framework with increase in number of targets. In the final work, a novel data association technique for multi-target tracking is proposed which more efficiently assigns multiple measurements to every target, with a reduced computational complexity. A belief propagation (BP) based cluster to target association method is proposed which exploits the inter-cluster dependency information. Both location and features of clusters are used to re-identify the targets when they emerge from occlusions. The proposed techniques are evaluated on benchmark data sets and their performance is compared with state-of-the-art techniques by using, quantitative and global performance measures

    READUP BUILDUP. Thync - instant α-readings

    Get PDF
    • …
    corecore